OFFSET
0,2
COMMENTS
Start from an array A(n,i) = Sum_{j=0..n} (i+1)^j*(3n-3j+1) which contains A000012
T(n,.) is obtained by computing the inverse binomial transform of row n of A(.,.).
Since A(n,i) is a polynomial in i, the inverse binomial transform is essentially finite; all trailing zeros are discarded while building the triangle.
FORMULA
T(n,0) = A000326(n+1).
T(n,n) = n! = A000142(n).
T(n,k) = Sum_{j=0..n} A028246(j+1,k+1)*(3*n-3*j+1). - R. J. Mathar, Mar 27 2010
EXAMPLE
First few rows of the array A(.,.):
1, 1, 1, 1, 1, ...
5, 6, 7, 8, 9, ...
12, 19, 28, 39, 52, ...
...
such that for example the inverse binomial transform of 12, 19, 28, ... becomes row n=2 of the triangle: 12, 7, 2, (0, 0, 0, 0, ...).
First few rows of the triangle T(n,k):
1,
5, 1;
12, 7, 2;
22, 26, 20, 6;
35, 74, 112, 84, 24;
51, 183, 484, 672, 456, 120;
...
MAPLE
A := proc(n, i) add( (i+1)^j*(3*n-3*j+1), j=0..n) ; end proc:
A116923 := proc(n, m) add((-1)^(i+m)*binomial(m, i)*A(n, i), i=0..m) ; end proc:
seq(seq(A116923(n, k), k=0..n), n=0..15) ; # R. J. Mathar, Mar 27 2010
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 26 2006
EXTENSIONS
Offset set to 0 and precise definition added by R. J. Mathar, Mar 27 2010
STATUS
approved