login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318759
Numbers x whose trajectory reaches 1 under recursive applications of the map x -> x/3 if x == 0 (mod 3), x -> (4*x+2)/3 if x == 1 (mod 3), x -> (4*x+1)/3 if x == 2 (mod 3).
0
1, 2, 3, 4, 6, 9, 12, 13, 18, 20, 27, 29, 36, 39, 40, 54, 60, 65, 81, 87, 108, 109, 117, 120, 121, 136, 146, 162, 180, 182, 195, 197, 243, 245, 261, 263, 272, 324, 327, 328, 332, 351, 360, 363
OFFSET
1,2
PROG
(C++)
#include <iostream>
using namespace std;
void Number_Generator();
int main()
{
Number_Generator();
return 0;
}
void Number_Generator()
{
int Number_Tested=1; int Temporary;
int Divideby=3;
//For numbers bigger than this you need to use unsigned long int or do some large number implementation.
int Limit=38000;
while(Number_Tested<Limit)
{
Temporary=Number_Tested;
//There are two cycles. 1 and 7 are the smallest numbers in those cycles.
while((Temporary!=1) && (Temporary!=7))
{
if(Temporary%Divideby)
Temporary=(Temporary*(Divideby+1)+(Divideby-(Temporary%Divideby)))/Divideby;
else
Temporary=Temporary/Divideby;
}
if(Temporary==1)
cout<<Number_Tested<<"\n";
Number_Tested++;
}
}
CROSSREFS
KEYWORD
nonn
AUTHOR
Jack Warren, Sep 02 2018
STATUS
approved