

A318761


Composite k that divides 2^(k2) + 3^(k2) + 6^(k2)  1.


2



4, 6, 8, 12, 24, 25, 125, 174, 228, 276, 325, 348, 451, 1032, 1105, 1128, 1729, 2388, 2465, 2701, 2821, 3721, 5272, 5365, 6601, 8911, 10585, 12025, 12673, 15841, 18721, 22681, 23585, 23725, 29341, 31621, 32376, 35016, 35425, 41041, 41125, 46632, 46657, 47125
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Note that for primes p >= 5, p always divides 2^(p2) + 3^(p2) + 6^(p2)  1 (see A318760).
It's interesting to study the squares of primes in this sequence. For primes p >= 5, x^(p^22) == x^(p2) (mod p^2) for any integer x, so p^2 is a term if and only if p^2 divides 2^(p2) + 3^(p2) + 6^(p2)  1. It's easy to see that for any prime p, p^2 is a term of this sequence if and only if p is in A238201 and p != 3 (p = 2, 5, 61, 1680023, 7308036881, there are no others up to 7*10^10).  Jianing Song, Dec 25 2018


LINKS



EXAMPLE

(2^10 + 3^10 + 6^10  1)/12 = 5403854 which is an integer, so 12 is a term.
(2^22 + 3^22 + 6^22  1)/24 = 5484238967813377 which is also an integer, so 24 is a term.


PROG

(PARI) b(n) = lift(Mod(2, n)^(n2) + Mod(3, n)^(n2) + Mod(6, n)^(n2));
for(n=2, 30000, if(isprime(n)==0&&b(n)==1, print1(n, ", ")))


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



