login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338927
Locations of records in A338565.
1
1, 4, 6, 8, 12, 24, 36, 48, 72, 96, 144, 192, 240, 288, 384, 432, 576, 864, 1152, 1440, 1728, 2304, 2880, 3456, 4320, 4608, 5184, 5760, 6912, 8640, 10368, 11520, 13824, 17280, 20736, 23040, 25920, 27648, 34560, 41472, 51840, 62208, 69120, 82944
OFFSET
1,2
COMMENTS
The first term divisible by 3 is a(3)=6.
The first term divisible by 5 is a(13)=240.
The first term divisible by 11 is a(48)=190080.
EXAMPLE
a(3) = 6 is in the sequence because A338565(6) = 3 is greater than A338565(n) for n < 6.
MAPLE
ispali:= proc(n) local L;
L:= convert(n, base, 10);
evalb(L = ListTools:-Reverse(L))
end proc:
N:= 200000: # for terms <= N
Palis:= select(ispali, {$2..N}):
A338565:= Vector(N):
A338565[1]:= 1:
R:= 1: bestv:= 1:
A[1]:= 1:
for n from 2 to N do
A[n]:= add(A[n/d], d= numtheory:-divisors(n) intersect Palis);
if A[n] > bestv then bestv:= A[n]; R:= R, n
od:
R;
MATHEMATICA
Block[{a, s}, a[n_] := If[n == 1, n, Sum[If[(d < n && PalindromeQ[n/d]), a[d], 0], {d, Divisors[n]}]]; s = Array[a, 10^4]; Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]] ] (* Michael De Vlieger, Nov 15 2020 *)
CROSSREFS
Sequence in context: A318761 A020153 A307866 * A286373 A286372 A151760
KEYWORD
nonn
AUTHOR
Robert Israel, Nov 15 2020
STATUS
approved