

A328928


Squares visited by a knight moving on a taxicab geometry numbered board where the knight moves to the smallest numbered unvisited square; the minimum distance from the origin is used if the square numbers are equal; the smallest spiral number ordering is used if the distances are equal.


20



0, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 5, 2, 3, 4, 3, 4, 3, 2, 5, 4, 3, 4, 5, 2, 3, 4, 5, 4, 5, 4, 3, 4, 5, 6, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 5, 6, 7, 6, 5, 4, 5, 4, 7, 6, 5, 6, 7, 6, 5, 6, 5, 4, 7, 6, 5, 6, 7, 6, 5, 8, 7, 6, 7, 6, 5, 6, 7, 6, 5, 6, 5, 6, 7, 8, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This sequence uses the taxicab geometry distance from the 0squared origin to enumerate each square on the board. At each step the knight goes to an unvisited square with the smallest square number. If the knight has a choice of two or more squares with the same number it then chooses the square which is the closest to the 0squared origin. If two or more squares are found which also have the same distance to the origin, then the square which was first drawn in a square spiral numbering is chosen, i.e., the smallest spiral numbered square as in A316667.
The sequence is finite. After 1092366 steps a square with the number 728 (standard spiral number = 1165673) is visited, after which all neighboring squares have been visited.


LINKS

Scott R. Shannon, Image showing the 1092366 steps of the knight's path. The green dot is the first square and the red dot the last. Blue dots show the eight occupied squares surrounding the final square; the final square is on the boundary at about the 12:30 clock position.


FORMULA



EXAMPLE

The squares are labeled using their taxicab geometry distance from the origin:
.
++++++++
 6  5  4  3  4  5  6 
++++++++
 5  4  3  2  3  4  5 
++++++++
 4  3  2  1  2  3  4 
++++++++
 3  2  1  0  1  2  3 
++++++++
 4  3  2  1  2  3  4 
++++++++
 5  4  3  2  3  4  5 
++++++++
 6  5  4  3  4  5  6 
++++++++
.
If the knight has a choice of two or more squares with the same number which also have the same distance from the origin, then the square with the minimum square spiral number, as shown in A316667, is chosen.


PROG



CROSSREFS



KEYWORD

nonn,fini


AUTHOR



STATUS

approved



