The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318760 a(n) = (2^(p-2) + 3^(p-2) + 6^(p-2) - 1)/p where p = prime(n). 3
 50, 1150, 917990, 27921250, 27658786250, 890883616630, 953780917514270, 35292771610455205250, 1188569463078058297390, 46461372967525788391551250, 54339408694585566675022336250, 1865231796118578544316494648870, 2211609309235145328175672372758350, 91503540845067670142505715662203731250 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS Related to 46th IMO 2005 Problem 4, which asks to find all positive integers k such that gcd(2^n + 3^n + 6^n - 1, k) = 1 for all n. The answer is k = 1. The main part of the solution is to show that for all primes p >= 5 satisfies p divides 2^(p-2) + 3^(p-2) + 6^(p-2) - 1. By Fermat's little theorem, 2^(p-1) == 3^(p-1) == 6^(p-1) == 1 (mod p), so 2^(p-2) + 3^(p-2) + 6^(p-2) - 1 == 2^(-1) + 3^(-1) + 6^(-1) - 1 == 0 (mod p). Here a^(-1) is the multiplicative inverse of a modulo p. All terms are multiples of 10 but not divisible by 4. If prime(n) !== 3 (mod 8) then a(n) is divisible by 50; if n > 3 and prime(n) == 1 (mod 4) then a(n) is divisible by 250; if prime(n) == 1, 13, 17 (mod 20) then a(n) is divisible by 1250. Note that a(1) = 1 is also an integer, while a(2) = 10/3 is not. LINKS International Mathematical Olympiad, 46th IMO 2005 EXAMPLE a(3) = (2^3 + 3^3 + 6^3 - 1)/5 = 50, a(4) = (2^5 + 3^5 + 6^5 - 1)/7 = 1150, a(5) = (2^9 + 3^9 + 6^9 - 1)/11 = 917990 ... MATHEMATICA Table[(2^(Prime[n] - 2) + 3^(Prime[n] - 2) + 6^(Prime[n] - 2) - 1) / Prime[n], {n, 3, 20}] (* Vincenzo Librandi, Sep 03 2018 *) PROG (PARI) a(n) = (2^(prime(n)-2) + 3^(prime(n)-2) + 6^(prime(n)-2) - 1)/prime(n) (MAGMA) [(2^(NthPrime(n)-2)+3^(NthPrime(n)-2)+6^(NthPrime(n)-2)- 1)/NthPrime(n): n in [3..20]]; // Vincenzo Librandi, Sep 03 2018 CROSSREFS For composite k such that (2^(k-2) + 3^(k-2) + 6^(k-2) - 1)/k is an integer, see A318761. Sequence in context: A231421 A200207 A160152 * A250520 A017766 A187459 Adjacent sequences:  A318757 A318758 A318759 * A318761 A318762 A318763 KEYWORD nonn AUTHOR Jianing Song, Sep 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 13:28 EST 2022. Contains 350607 sequences. (Running on oeis4.)