login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088537
Decimal expansion of Madelung's constant M2.
11
1, 6, 1, 5, 5, 4, 2, 6, 2, 6, 7, 1, 2, 8, 2, 4, 7, 2, 3, 8, 6, 7, 9, 2, 3, 3, 3, 2, 7, 5, 8, 6, 1, 8, 0, 9, 0, 1, 9, 6, 4, 2, 2, 9, 2, 3, 6, 1, 3, 7, 7, 7, 1, 4, 5, 6, 9, 3, 7, 3, 5, 3, 5, 9, 6, 1, 2, 6, 5, 1, 2, 3, 1, 6, 1, 5, 3, 3, 3, 6, 2, 9, 0, 4, 1, 6, 5, 8, 9, 5, 5, 1, 7, 1, 8, 7, 2, 1, 4, 5, 5, 7, 4, 9, 0
OFFSET
1,2
REFERENCES
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 76-81.
LINKS
I. J. Zucker, Exact results for some lattice sums in 2, 4, 6 and 8 dimensions, J. Phys. A: Math., Gen. vol. 7 (1974) no. 13, pp. 1568-1575.
FORMULA
M2 = Sum_{ -oo < i < oo, -oo < j < oo, (i,j) != (0,0) } (-1)^(i + j)/sqrt(i^2 + j^2)).
M2 = 4*(sqrt(2) - 1)*zeta(1/2)*beta(1/2) (beta=Dirichlet beta function).
EXAMPLE
M2 = -1.6155426267....
MAPLE
M2:=evalf(4*(sqrt(2)-1)*Zeta(1/2)*sum('(-1)^n/sqrt(2*n+1)', 'n'=0..infinity), 120); # Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 10 2009
MATHEMATICA
(2-2*I)*(Sqrt[2]-1)*Zeta[1/2]*(PolyLog[1/2, -I]-Zeta[1/2, 1/4]) // Re // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 15 2013 *)
PROG
(PARI) DirBet=sumalt(n=0, (-1)^n/sqrt(2*n+1)); print(4.0*(sqrt(2)-1)*zeta(0.5)*DirBet) ; \\ R. J. Mathar, Jul 20 2007
CROSSREFS
Cf. A059750.
Sequence in context: A021623 A197296 A177838 * A372065 A370424 A325313
KEYWORD
nonn,cons
AUTHOR
Benoit Cloitre, Nov 16 2003
EXTENSIONS
More terms from R. J. Mathar, Jul 20 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 10 2009
STATUS
approved