

A197296


Decimal expansion of least x>0 having sin(6x)=(sin 8x)^2.


1



1, 1, 6, 1, 5, 5, 2, 1, 5, 7, 9, 6, 7, 2, 9, 1, 0, 2, 3, 9, 2, 1, 4, 5, 8, 8, 1, 7, 5, 1, 1, 9, 7, 2, 5, 3, 9, 8, 6, 0, 9, 3, 9, 7, 5, 5, 2, 5, 9, 9, 7, 6, 9, 7, 1, 9, 7, 4, 9, 1, 2, 9, 4, 7, 3, 6, 1, 3, 8, 5, 5, 7, 9, 8, 5, 8, 0, 4, 6, 5, 9, 7, 6, 3, 1, 7, 0, 0, 7, 1, 0, 1, 5, 6, 1, 6, 5, 1, 1, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x>0 satisfying sin(b*x)=(sin(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=0..99.


EXAMPLE

x=0.11615521579672910239214588175119725398609...


MATHEMATICA

b = 6; c = 8; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .1, .3}, WorkingPrecision > 100]
RealDigits[t] (* A197296 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 0.6}]


CROSSREFS

Cf. A197133.
Sequence in context: A195695 A199047 A021623 * A177838 A088537 A325313
Adjacent sequences: A197293 A197294 A197295 * A197297 A197298 A197299


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 13 2011


STATUS

approved



