login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199047 Decimal expansion of x>0 satisfying x^2 + sin(x) = 2. 3
1, 0, 6, 1, 5, 4, 9, 7, 7, 4, 6, 3, 1, 3, 8, 3, 8, 2, 5, 6, 0, 2, 0, 3, 3, 4, 0, 3, 5, 1, 9, 8, 9, 9, 3, 4, 2, 0, 5, 8, 8, 7, 4, 1, 7, 8, 3, 8, 9, 2, 4, 1, 4, 8, 6, 0, 8, 4, 9, 8, 8, 9, 3, 5, 8, 0, 9, 3, 2, 5, 3, 6, 5, 8, 0, 7, 8, 0, 1, 3, 6, 8, 1, 6, 0, 5, 1, 4, 7, 7, 2, 2, 1, 6, 9, 7, 9, 5, 2, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A198866 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

negative: -1.72846631899717722235659184827479...

positive:  1.06154977463138382560203340351989...

MATHEMATICA

a = 1; b = 1; c = 2;

f[x_] := a*x^2 + b*Sin[x]; g[x_] := c

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -1.73, -1.72}, WorkingPrecision -> 110]

RealDigits[r] (* A199046 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.06, 1.07}, WorkingPrecision -> 110]

RealDigits[r] (* A199047 *)

PROG

(PARI) a=1; b=1; c=2; solve(x=0, 1.5, a*x^2 - c + b*sin(x)) \\ G. C. Greubel, Feb 19 2019

(Sage) a=1; b=1; c=2; (a*x^2 + b*sin(x)==c).find_root(0, 2, x) # G. C. Greubel, Feb 19 2019

CROSSREFS

Cf. A198866.

Sequence in context: A245725 A011096 A195695 * A021623 A197296 A177838

Adjacent sequences:  A199044 A199045 A199046 * A199048 A199049 A199050

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 02 2011

EXTENSIONS

Terms a(87) onward corrected by G. C. Greubel, Feb 19 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 17:04 EST 2020. Contains 332080 sequences. (Running on oeis4.)