The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199047 Decimal expansion of x>0 satisfying x^2 + sin(x) = 2. 3
 1, 0, 6, 1, 5, 4, 9, 7, 7, 4, 6, 3, 1, 3, 8, 3, 8, 2, 5, 6, 0, 2, 0, 3, 3, 4, 0, 3, 5, 1, 9, 8, 9, 9, 3, 4, 2, 0, 5, 8, 8, 7, 4, 1, 7, 8, 3, 8, 9, 2, 4, 1, 4, 8, 6, 0, 8, 4, 9, 8, 8, 9, 3, 5, 8, 0, 9, 3, 2, 5, 3, 6, 5, 8, 0, 7, 8, 0, 1, 3, 6, 8, 1, 6, 0, 5, 1, 4, 7, 7, 2, 2, 1, 6, 9, 7, 9, 5, 2, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A198866 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE negative: -1.72846631899717722235659184827479... positive:  1.06154977463138382560203340351989... MATHEMATICA a = 1; b = 1; c = 2; f[x_] := a*x^2 + b*Sin[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.73, -1.72}, WorkingPrecision -> 110] RealDigits[r] (* A199046 *) r = x /. FindRoot[f[x] == g[x], {x, 1.06, 1.07}, WorkingPrecision -> 110] RealDigits[r] (* A199047 *) PROG (PARI) a=1; b=1; c=2; solve(x=0, 1.5, a*x^2 - c + b*sin(x)) \\ G. C. Greubel, Feb 19 2019 (Sage) a=1; b=1; c=2; (a*x^2 + b*sin(x)==c).find_root(0, 2, x) # G. C. Greubel, Feb 19 2019 CROSSREFS Cf. A198866. Sequence in context: A245725 A011096 A195695 * A021623 A197296 A177838 Adjacent sequences:  A199044 A199045 A199046 * A199048 A199049 A199050 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 02 2011 EXTENSIONS Terms a(87) onward corrected by G. C. Greubel, Feb 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 17:04 EST 2020. Contains 332080 sequences. (Running on oeis4.)