login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088536
Number of unimodal functions [1..n]->[1..n].
6
1, 4, 22, 130, 791, 4900, 30738, 194634, 1241383, 7963384, 51325352, 332095816, 2155894508, 14035149748, 91593941402, 599021799242, 3924954250975, 25760310654100, 169322682857430, 1114452091832130, 7344021912458295, 48448974411575280, 319942093205166840, 2114743632331515480
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=0..n-1} binomial(2k+n-1,2k).
Recurrence: 36*n*(2*n-3)*a(n) = 2*(269*n^2-549*n+235)*a(n-1) - (359*n^2-1062*n+907)*a(n-2) + 6*(3*n-8)*(3*n-7)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 27^n/(5*2^(2*n-1)*sqrt(3*Pi*n)). - Vaclav Kotesovec, Oct 14 2012
It appears that a(n) = Sum_{k = 0..2*n-2} (-1)^k*binomial(n+k,k). - Peter Bala, Oct 08 2021
EXAMPLE
From Joerg Arndt, May 10 2013: (Start)
The a(3) = 22 unimodal maps [1,2,3]->[1,2,3] are
01: [ 1 1 1 ]
02: [ 1 1 2 ]
03: [ 1 1 3 ]
04: [ 1 2 1 ]
05: [ 1 2 2 ]
06: [ 1 2 3 ]
07: [ 1 3 1 ]
08: [ 1 3 2 ]
09: [ 1 3 3 ]
10: [ 2 1 1 ]
11: [ 2 2 1 ]
12: [ 2 2 2 ]
13: [ 2 2 3 ]
14: [ 2 3 1 ]
15: [ 2 3 2 ]
16: [ 2 3 3 ]
17: [ 3 1 1 ]
18: [ 3 2 1 ]
19: [ 3 2 2 ]
20: [ 3 3 1 ]
21: [ 3 3 2 ]
22: [ 3 3 3 ]
(End)
MATHEMATICA
Table[Sum[Binomial[2k+n-1, 2k], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(PARI) a(n) = sum(k=0, n-1, binomial(2*k+n-1, 2*k)); \\ Joerg Arndt, May 10 2013
CROSSREFS
Main diagonal of A071920.
Cf. A225006 (unimodal maps [1..n]->[1..n+1]).
Sequence in context: A086682 A261399 A155862 * A066380 A180899 A007195
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 16 2003
EXTENSIONS
More terms from David Wasserman, Aug 09 2005
STATUS
approved