OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
FORMULA
a(n) = Sum_{k=0..n-1} binomial(2k+n-1,2k).
Recurrence: 36*n*(2*n-3)*a(n) = 2*(269*n^2-549*n+235)*a(n-1) - (359*n^2-1062*n+907)*a(n-2) + 6*(3*n-8)*(3*n-7)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 27^n/(5*2^(2*n-1)*sqrt(3*Pi*n)). - Vaclav Kotesovec, Oct 14 2012
It appears that a(n) = Sum_{k = 0..2*n-2} (-1)^k*binomial(n+k,k). - Peter Bala, Oct 08 2021
EXAMPLE
From Joerg Arndt, May 10 2013: (Start)
The a(3) = 22 unimodal maps [1,2,3]->[1,2,3] are
01: [ 1 1 1 ]
02: [ 1 1 2 ]
03: [ 1 1 3 ]
04: [ 1 2 1 ]
05: [ 1 2 2 ]
06: [ 1 2 3 ]
07: [ 1 3 1 ]
08: [ 1 3 2 ]
09: [ 1 3 3 ]
10: [ 2 1 1 ]
11: [ 2 2 1 ]
12: [ 2 2 2 ]
13: [ 2 2 3 ]
14: [ 2 3 1 ]
15: [ 2 3 2 ]
16: [ 2 3 3 ]
17: [ 3 1 1 ]
18: [ 3 2 1 ]
19: [ 3 2 2 ]
20: [ 3 3 1 ]
21: [ 3 3 2 ]
22: [ 3 3 3 ]
(End)
MATHEMATICA
Table[Sum[Binomial[2k+n-1, 2k], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(PARI) a(n) = sum(k=0, n-1, binomial(2*k+n-1, 2*k)); \\ Joerg Arndt, May 10 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 16 2003
EXTENSIONS
More terms from David Wasserman, Aug 09 2005
STATUS
approved