login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A261805
Decimal expansion of M_8, the 8th Madelung constant (negated).
4
2, 0, 5, 2, 4, 6, 6, 8, 2, 7, 2, 6, 9, 2, 7, 1, 2, 2, 8, 1, 7, 6, 3, 3, 7, 7, 9, 9, 1, 7, 3, 3, 8, 3, 9, 9, 1, 7, 0, 8, 3, 7, 7, 5, 2, 9, 9, 6, 5, 5, 8, 2, 1, 9, 3, 2, 3, 7, 3, 2, 4, 5, 7, 7, 5, 3, 4, 9, 9, 4, 1, 3, 2, 8, 7, 5, 2, 7, 0, 6, 1, 4, 6, 9, 8, 5, 1, 9, 8, 8, 3, 9, 4, 1, 3, 1, 7, 5, 1, 0, 8, 8, 1
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.
LINKS
Eric Weisstein's MathWorld, Madelung Constants
FORMULA
M_8 = (15/(4*Pi^3))*(8*sqrt(2) - 1)*zeta(1/2)*zeta(7/2).
EXAMPLE
-2.052466827269271228176337799173383991708377529965582...
MATHEMATICA
M8 = (15/(4*Pi^3))*(8*Sqrt[2] - 1)*Zeta[1/2]*Zeta[7/2]; RealDigits[M8, 10, 103] // First
PROG
(PARI) th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
intnum(x=0, [oo, 1], (th4(exp(-x))^8-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved