OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Eric Weisstein's MathWorld, Dirichlet Beta Function
Eric Weisstein's MathWorld, Madelung Constants
FORMULA
M6 = (3/Pi^2)*(4*(sqrt(2)-1)*zeta(1/2)*beta(5/2) - (4*sqrt(2)-1)*zeta(5/2)*beta(1/2)), where beta is Dirichlet's "beta" function.
EXAMPLE
-1.9655570390090782813123135557351853678689767284464645117...
MATHEMATICA
beta[x_] := (Zeta[x, 1/4] - Zeta[x, 3/4])/4^x; M6 = (3/Pi^2)*(4*(Sqrt[2]-1)*Zeta[1/2]*beta[5/2] - (4*Sqrt[2]-1)*Zeta[5/2]*beta[1/2]); RealDigits[M6, 10, 104][[1]]
PROG
(PARI) th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 07 2016
(PARI) th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Sep 10 2014
STATUS
approved