login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247040
Decimal expansion of M_6, the 6th Madelung constant.
7
1, 9, 6, 5, 5, 5, 7, 0, 3, 9, 0, 0, 9, 0, 7, 8, 2, 8, 1, 3, 1, 2, 3, 1, 3, 5, 5, 5, 7, 3, 5, 1, 8, 5, 3, 6, 7, 8, 6, 8, 9, 7, 6, 7, 2, 8, 4, 4, 6, 4, 6, 4, 5, 1, 1, 7, 0, 8, 5, 6, 5, 2, 8, 8, 7, 8, 1, 7, 9, 6, 4, 0, 1, 4, 3, 2, 5, 3, 5, 4, 5, 7, 6, 4, 9, 3, 1, 3, 4, 2, 6, 6, 6, 3, 6, 7, 2, 6, 7, 6, 4, 2, 9, 8
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.
LINKS
Eric Weisstein's MathWorld, Dirichlet Beta Function
Eric Weisstein's MathWorld, Madelung Constants
FORMULA
M6 = (3/Pi^2)*(4*(sqrt(2)-1)*zeta(1/2)*beta(5/2) - (4*sqrt(2)-1)*zeta(5/2)*beta(1/2)), where beta is Dirichlet's "beta" function.
EXAMPLE
-1.9655570390090782813123135557351853678689767284464645117...
MATHEMATICA
beta[x_] := (Zeta[x, 1/4] - Zeta[x, 3/4])/4^x; M6 = (3/Pi^2)*(4*(Sqrt[2]-1)*Zeta[1/2]*beta[5/2] - (4*Sqrt[2]-1)*Zeta[5/2]*beta[1/2]); RealDigits[M6, 10, 104][[1]]
PROG
(PARI) th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 07 2016
(PARI) th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved