login
A247040
Decimal expansion of M_6, the 6th Madelung constant.
7
1, 9, 6, 5, 5, 5, 7, 0, 3, 9, 0, 0, 9, 0, 7, 8, 2, 8, 1, 3, 1, 2, 3, 1, 3, 5, 5, 5, 7, 3, 5, 1, 8, 5, 3, 6, 7, 8, 6, 8, 9, 7, 6, 7, 2, 8, 4, 4, 6, 4, 6, 4, 5, 1, 1, 7, 0, 8, 5, 6, 5, 2, 8, 8, 7, 8, 1, 7, 9, 6, 4, 0, 1, 4, 3, 2, 5, 3, 5, 4, 5, 7, 6, 4, 9, 3, 1, 3, 4, 2, 6, 6, 6, 3, 6, 7, 2, 6, 7, 6, 4, 2, 9, 8
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.
LINKS
Eric Weisstein's MathWorld, Dirichlet Beta Function
Eric Weisstein's MathWorld, Madelung Constants
FORMULA
M6 = (3/Pi^2)*(4*(sqrt(2)-1)*zeta(1/2)*beta(5/2) - (4*sqrt(2)-1)*zeta(5/2)*beta(1/2)), where beta is Dirichlet's "beta" function.
EXAMPLE
-1.9655570390090782813123135557351853678689767284464645117...
MATHEMATICA
beta[x_] := (Zeta[x, 1/4] - Zeta[x, 3/4])/4^x; M6 = (3/Pi^2)*(4*(Sqrt[2]-1)*Zeta[1/2]*beta[5/2] - (4*Sqrt[2]-1)*Zeta[5/2]*beta[1/2]); RealDigits[M6, 10, 104][[1]]
PROG
(PARI) th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 07 2016
(PARI) th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved