login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247038
Decimal expansion of Integral_{x=0..1} log(floor(1/x))/(1+x) dx.
2
6, 8, 4, 7, 2, 4, 7, 8, 8, 5, 6, 3, 1, 5, 7, 1, 2, 3, 2, 9, 9, 1, 4, 6, 1, 4, 8, 7, 5, 5, 7, 7, 7, 6, 2, 0, 4, 6, 0, 6, 7, 5, 4, 1, 6, 3, 3, 7, 4, 4, 8, 8, 3, 6, 6, 0, 6, 2, 8, 9, 8, 6, 7, 8, 1, 5, 9, 5, 6, 8, 8, 2, 1, 7, 6, 2, 6, 9, 3, 6, 1, 0, 4, 3, 7, 0, 7, 6, 8, 1, 4, 3, 4, 9, 5, 8, 5, 8, 1, 0, 0, 9, 9, 7
OFFSET
0,1
COMMENTS
The same integral with 1/x instead of floor(1/x) evaluates to Pi^2/12 = A072691.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8 Khinchin-Lévy constants, p. 61.
LINKS
David Bailey, Jonathan Borwein and Richard Crandall, On the Khintchine constant, Mathematics of Computation, Vol. 66, No. 217 (1997), pp. 417-431.
Eric Weisstein's MathWorld, Khinchin's Constant
FORMULA
Equals log(2)*log(K), where K is Khinchin's constant A002210 = 2.685452...
From Amiram Eldar, Aug 19 2020: (Start)
Equals Sum_{k>=1} (zeta(2*k)-1)/k * (1 - 1/2 + 1/3 - ... + 1/(2*k - 1)).
Equals -Sum_{k>=2} log(1-1/k) * log(1+1/k). (End)
EXAMPLE
0.6847247885631571232991461487557776204606754163374488366...
MATHEMATICA
RealDigits[Log[2]*Log[Khinchin], 10, 104] // First
PROG
(Python)
from mpmath import mp, log, khinchin
mp.dps=106
print([int(n) for n in list(str(log(2)*log(khinchin)))[2:-2]]) # Indranil Ghosh, Jul 08 2017
CROSSREFS
Sequence in context: A371467 A244054 A195701 * A195492 A269802 A269991
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved