The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247038 Decimal expansion of Integral_{x=0..1} log(floor(1/x))/(1+x) dx. 2
 6, 8, 4, 7, 2, 4, 7, 8, 8, 5, 6, 3, 1, 5, 7, 1, 2, 3, 2, 9, 9, 1, 4, 6, 1, 4, 8, 7, 5, 5, 7, 7, 7, 6, 2, 0, 4, 6, 0, 6, 7, 5, 4, 1, 6, 3, 3, 7, 4, 4, 8, 8, 3, 6, 6, 0, 6, 2, 8, 9, 8, 6, 7, 8, 1, 5, 9, 5, 6, 8, 8, 2, 1, 7, 6, 2, 6, 9, 3, 6, 1, 0, 4, 3, 7, 0, 7, 6, 8, 1, 4, 3, 4, 9, 5, 8, 5, 8, 1, 0, 0, 9, 9, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The same integral with 1/x instead of floor(1/x) evaluates to Pi^2/12 = A072691. REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8 Khinchin-Lévy constants, p. 61. LINKS David Bailey, Jonathan Borwein and Richard Crandall, On the Khintchine constant, Mathematics of Computation, Vol. 66, No. 217 (1997), pp. 417-431. Daniel Shanks and John W. Wrench, Jr., Khintchine's constant." The American Mathematical Monthly, Vol. 66, No. 4 (1959), pp. 276-279. Eric Weisstein's MathWorld, Khinchin's Constant FORMULA Equals log(2)*log(K), where K is Khinchin's constant A002210 = 2.685452... From Amiram Eldar, Aug 19 2020: (Start) Equals Sum_{k>=1} (zeta(2*k)-1)/k * (1 - 1/2 + 1/3 - ... + 1/(2*k - 1)). Equals -Sum_{k>=2} log(1-1/k) * log(1+1/k). (End) EXAMPLE 0.6847247885631571232991461487557776204606754163374488366... MATHEMATICA RealDigits[Log[2]*Log[Khinchin], 10, 104] // First PROG (Python) from mpmath import mp, log, khinchin mp.dps=106 print([int(n) for n in list(str(log(2)*log(khinchin)))[2:-2]]) # Indranil Ghosh, Jul 08 2017 CROSSREFS Cf. A002210, A072691. Sequence in context: A234846 A244054 A195701 * A195492 A269802 A269991 Adjacent sequences:  A247035 A247036 A247037 * A247039 A247040 A247041 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Sep 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 03:42 EDT 2021. Contains 347478 sequences. (Running on oeis4.)