login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085469 Decimal expansion of Madelung constant (negated) for face-centered cubic lattice. 18
1, 7, 4, 7, 5, 6, 4, 5, 9, 4, 6, 3, 3, 1, 8, 2, 1, 9, 0, 6, 3, 6, 2, 1, 2, 0, 3, 5, 5, 4, 4, 3, 9, 7, 4, 0, 3, 4, 8, 5, 1, 6, 1, 4, 3, 6, 6, 2, 4, 7, 4, 1, 7, 5, 8, 1, 5, 2, 8, 2, 5, 3, 5, 0, 7, 6, 5, 0, 4, 0, 6, 2, 3, 5, 3, 2, 7, 6, 1, 1, 7, 9, 8, 9, 0, 7, 5, 8, 3, 6, 2, 6, 9, 4, 6, 0, 7, 8, 8, 9, 9, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is the electrostatic potential at the origin produced by unit charges of sign (-1)^(i+j+k) at all nonzero lattice points (i,j,k).

REFERENCES

Richard E. Crandall, Topics in Advanced Scientific Computation, Springer, Telos books, 1996. pages 73-79.

S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 76

Sadri Hassani, Mathematical Methods Using Mathematica: For Students of Physics and Related Fields, Springer, NY, page 60.

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1847

D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, Ten Problems in Experimental Mathematics, Amer. Math. Monthly 113 (6) (2006), 481-509.

R. E. Crandall and J. P. Buhler, Elementary function expansions for Madelung constants,J. Phys. A: Math. Gen. 20 (1987) no 16, 5497-5510

R. E. Crandall and J. P. Buhler, The potential within a crystal lattice, J. Phys. A: Math. Gen. 20 (1987) no 9, 2279-2292

E. R. Fuller Jr and E. R. Naimon, Electrostatic Contributions to the Brugger-Type Elastic Constants,Phys. Rev. B 6 (1971) no 10, 3609-3620

Leslie Glasser, Solid-State Energetics and Electrostatics: Madelung Constants and Madelung Energies, Inorg. Chem., 2012, 51 (4), 2420-2424; DOI: 10.1021/ic2023852

André Hautot, New applications of Poisson's summation formula, J of Phys, A vol. 8 #6, 1975 pp. 853-862.

Simon Plouffe, Madelung constant

Simon Plouffe, The Levy constant

Sandeep Tyagi, New series representation of the Madelung constant, Prog. Theor. Phys. 114 (2005) No 3, 517-521

Eric Weisstein's World of Mathematics, Benson's Formula

Eric Weisstein's World of Mathematics, Madelung Constants

Wikipedia, Madelung constant

Index entries for sequences related to f.c.c. lattice

FORMULA

Sum_{i, j, k not all 0} (-1)^(i+j+k)/sqrt(i^2+j^2+k^2).

EXAMPLE

-1.7475645946331821906362120355443974034851614366247417581528253507...

MATHEMATICA

RealDigits[ 12Pi*Sum[ Sech[Pi/2*Sqrt[(2j + 1)^2 + (2k + 1)^2]]^2, {j, 0, 40}, {k, 0, 40}], 10, 111][[1]] (* Robert G. Wilson v, Jul 12 2005 *)

CROSSREFS

Cf. A004015, A005875, A108778 (continued fraction).

Sequence in context: A194361 A153586 A153186 * A050996 A085541 A133055

Adjacent sequences:  A085466 A085467 A085468 * A085470 A085471 A085472

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jul 01 2003

EXTENSIONS

Entry revised by N. J. A. Sloane, Apr 12, 2004

Definition corrected by Leslie Glasser, Jan 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:42 EST 2016. Contains 278874 sequences.