OFFSET
0,1
COMMENTS
Named after the Hungarian mathematician Alfréd Rényi (1921-1970). - Amiram Eldar, Jun 24 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.3, p. 278.
A. Rényi, On a one-dimensional problem concerning random space-filling, Publ. Math. Inst. Hung. Acad. Sci., Vol. 3 (1958), pp. 109-127.
LINKS
George Marsaglia, Arif Zaman and John C. W. Marsaglia, Numerical solution of some classical differential-difference equations, Math. Comp., Vol. 53, No. 187 (1989), pp. 191-201.
Simon Plouffe, The Parking or Renyi constant. [broken link]
Simon Plouffe, The Parking or Renyi constant.
Antonín Slavík, De Bruijn's Short Route to Rényi's Parking Constant, Amer. Math. Monthly 131 (2024), pp. 831-841 (preprint).
Philipp O. Tsvetkov, Stoichiometry of irreversible ligand binding to a one-dimensional lattice, Scientific Reports, Springer Nature, Vol. 10 (2020), Article number: 21308.
Eric Weisstein's World of Mathematics, Rényi's Parking Constants.
FORMULA
Equals exp(-2*gamma) * Integral_{x>=0} exp(2*Ei(-x))/x^2 dx, where gamma is Euler's constant (A001620) and Ei(x) is the exponential integral. - Amiram Eldar, Jun 24 2021
EXAMPLE
0.7475979202534114351787309438301781730247862640742283766042291634251678816...
MATHEMATICA
digits = 101; c = NIntegrate[E^(-2*(EulerGamma + Gamma[0, t] + Log[t])), {t, 0, Infinity}, WorkingPrecision -> digits + 10, MaxRecursion -> 20]; RealDigits[c, 10, digits][[1]] (* Jean-François Alcover, Nov 05 2012, updated May 21 2016 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved