login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085466
a(n) is the denominator of the polynomial in e^2 giving the (2n)th du Bois Reymond constant.
8
2, 8, 32, 384, 1536, 10240, 368640, 10321920, 4587520, 297271296, 29727129600, 435997900800, 15695924428800, 116598295756800, 1523551064555520, 1371195958099968000, 5484783832399872000, 41440588955910144000
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, du Bois-Reymond Constants.
EXAMPLE
{(-7 + e^2)/2, (-25 - 4*e^2 + e^4)/8, (-98 + 3*e^2 - 6*e^4 + e^6)/32}
MAPLE
a := proc(n) local r ; r := residue(x^2/(1+x^2)^n/(tan(x)-x), x=I) ; r := -3-2*subs(tanh(1)=(x-1/x)/(x+1/x), %) ; r := taylor(r, x=0, 16*n+2) ; cf := 1 ; for p from 0 to 2*n by 2 do cf := lcm(cf, denom(coeftayl(r, x=0, p))) ; od ; r := simplify(convert(r*cf, polynom)) ; RETURN([cf, r]) ; end: A085466 := proc() # n = 1 invalid formula printf("2, ") ; for n from 2 to 14 do a085467 := a(n)[1] : printf("%d, ", a085467) ; od : end: A085466() ; # R. J. Mathar, Apr 05 2007
MATHEMATICA
a = {}; Do[p = FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^n), {x, I}]]]; AppendTo[a, Denominator[p]], {n, 1, 9}]; a (* Artur Jasinski, Mar 26 2008 *)
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jul 01 2003
EXTENSIONS
More terms from R. J. Mathar, Apr 05 2007
Extended by Max Alekseyev, Sep 15 2009
STATUS
approved