login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134751
Hankel transform of expansion of (1/(1-x^2))c(x/(1-x^2)), where c(x) is the g.f. of A000108.
5
1, 2, 8, 32, 256, 4096, 65536, 2097152, 134217728, 8589934592, 1099511627776, 281474976710656, 72057594037927936, 36893488147419103232, 37778931862957161709568, 38685626227668133590597632
OFFSET
0,2
COMMENTS
Hankel transform of A105864.
The sequence 1,1,2,8,... with general term 2^floor(n^2/3) is the Hankel transform of A109033. - Paul Barry, Dec 14 2008
FORMULA
a(n) = 2^floor((n+1)^2/3);
a(n) = Product_{k=1..n} (5/3 - 2*cos(2*Pi*k/3)/3)^(n-k+1);
a(n) = Product_{k=1..n} A130196(k)^(n-k+1).
a(n) = 4*a(n-1)*a(n-3)/a(n-4). Somos-4 sequence associated to, e.g., y^2 = 1 - 8x + 16x^2 - 8x^3. - Paul Barry, Nov 27 2009
a(n) = a(-2-n) for all n in Z. - Michael Somos, May 12 2022
MATHEMATICA
a[ n_] := 2^Quotient[(n+1)^2, 3]; (* Michael Somos, May 12 2022 *)
PROG
(PARI) {a(n) = 2^((n+1)^2\3)}; /* Michael Somos, May 12 2022 */
CROSSREFS
Sequence in context: A262480 A062797 A369645 * A139014 A063505 A085466
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 08 2007
STATUS
approved