Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 14 2024 11:48:44
%S 1,2,8,32,256,4096,65536,2097152,134217728,8589934592,1099511627776,
%T 281474976710656,72057594037927936,36893488147419103232,
%U 37778931862957161709568,38685626227668133590597632
%N Hankel transform of expansion of (1/(1-x^2))c(x/(1-x^2)), where c(x) is the g.f. of A000108.
%C Hankel transform of A105864.
%C The sequence 1,1,2,8,... with general term 2^floor(n^2/3) is the Hankel transform of A109033. - _Paul Barry_, Dec 14 2008
%F a(n) = 2^floor((n+1)^2/3);
%F a(n) = Product_{k=1..n} (5/3 - 2*cos(2*Pi*k/3)/3)^(n-k+1);
%F a(n) = Product_{k=1..n} A130196(k)^(n-k+1).
%F a(n) = 4*a(n-1)*a(n-3)/a(n-4). Somos-4 sequence associated to, e.g., y^2 = 1 - 8x + 16x^2 - 8x^3. - _Paul Barry_, Nov 27 2009
%F a(n) = a(-2-n) for all n in Z. - _Michael Somos_, May 12 2022
%t a[ n_] := 2^Quotient[(n+1)^2, 3]; (* _Michael Somos_, May 12 2022 *)
%o (PARI) {a(n) = 2^((n+1)^2\3)}; /* _Michael Somos_, May 12 2022 */
%K easy,nonn
%O 0,2
%A _Paul Barry_, Nov 08 2007