OFFSET
0,4
COMMENTS
A permutation pattern is c-Wilf equivalent to its complement and reverse and therefore we can get trivial equivalence classes based on complement and reverse. a(3) = 2 because there are two trivial c-Wilf equivalence classes {123, 321} and {132, 231, 213, 321}.
a(n) is an upper bound of c-Wilf equivalence classes in the symmetric group S_n.
The numbers of c-Wilf equivalence classes in S_n are still unknown for large n. Up to 6, they are 1, 1, 2, 7, 25, 92.
LINKS
Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); arXiv preprint, arXiv:2312.07716 [math.CO], 2023.
Adrian Duane and Jeffrey Remmel, Minimal overlapping patterns in colored permutations, Electron. J. Combin. 18 (2011) #P25.
Brian Koichi Nakamura, Computational methods in permutation patterns, Ph. D. dissertation at Rutgers University, 2013.
FORMULA
a(0) = a(1) = 1, a(2*n) = ((2*n)!+(2*n)!!)/4, a(2*n+1) = ((2*n+1)!+(2*n)!!)/4, for n >= 1.
D-finite with recurrence: -(n-3)*a(n) + n*(n-3)*a(n-1) + (n-1)^2*a(n-2) - (n-2)*(n-1)^2*a(n-3) = 0 for n >= 5. - Georg Fischer, Nov 25 2022
MAPLE
a := proc(n) option remember; if n < 5 then return [1, 1, 1, 2, 8][n+1] fi;
(n*(n-3)*a(n-1) + (n-1)^2*a(n-2) - (n-2)*(n-1)^2*a(n-3))/(n-3) end:
seq(a(n), n = 0..25); # Peter Luschny, Nov 25 2022
MATHEMATICA
Join[{1, 1}, RecurrenceTable[{-(n-3)*a[n] + n*(n-3)*a[n-1] + (n-1)^2*a[n-2] - (n-2)*(n-1)^2*a[n-3] == 0, a[2]==1, a[3]==2, a[4]==8}, a, {n, 2, 25}]] (* Georg Fischer, Nov 25 2022 *)
PROG
(PARI) a(n) = if(n<=1, 1, if (n%2, n=(n-1)/2; ((2*n+1)!+2^n*n!)/4, n=n/2; ((2*n)!+2^n*n!)/4)); \\ Michel Marcus, Nov 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ran Pan, Sep 24 2015
STATUS
approved