login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262481
Numbers m having in binary representation exactly lpf(m) ones, where lpf = least prime factor = A020639; a(1) = 1.
2
1, 6, 10, 12, 18, 20, 21, 24, 34, 36, 40, 48, 55, 66, 68, 69, 72, 80, 81, 96, 115, 130, 132, 136, 144, 155, 160, 185, 192, 205, 258, 260, 261, 264, 272, 273, 288, 295, 320, 321, 355, 384, 395, 425, 514, 516, 520, 528, 535, 544, 565, 576, 595, 623, 625, 637
OFFSET
1,2
LINKS
FORMULA
A000120(a(n)) = A020639(a(n)).
EXAMPLE
. n | a(n) | A007088(a(n)) | factorization
. ----+------+---------------+--------------
. 1 | 1 | 1 | 1
. 2 | 6 | 110 | 2 * 3
. 3 | 10 | 1010 | 2 * 5
. 4 | 12 | 1100 | 2^2 * 3
. 5 | 18 | 10010 | 2 * 3^2
. 6 | 20 | 10100 | 2^2 * 5
. 7 | 21 | 10101 | 3 * 7
. 8 | 24 | 11000 | 2^3 * 3
. 9 | 34 | 100010 | 2 * 17
. 10 | 36 | 100100 | 2^2 * 3^2
. 11 | 40 | 101000 | 2^3 * 5
. 12 | 48 | 110000 | 2^4 * 3
. 13 | 55 | 110111 | 5 * 11
. 14 | 66 | 1000010 | 2 * 3 * 11
. 15 | 68 | 1000100 | 2^2 * 17
. 16 | 69 | 1000101 | 3 * 23
. 17 | 72 | 1001000 | 2^3 * 3^2
. 18 | 80 | 1010000 | 2^4 * 5
. 19 | 81 | 1010001 | 3^4
. 20 | 96 | 1100000 | 2^5 * 3
. 21 | 115 | 1110011 | 5 * 23
. 22 | 130 | 10000010 | 2 * 5 * 13
. 23 | 132 | 10000100 | 2^2 * 3 * 11
. 24 | 136 | 10001000 | 2^3 * 17
. 25 | 144 | 10010000 | 2^4 * 3^2 .
MATHEMATICA
Select[Range[640], FactorInteger[#][[1, 1]] == DigitCount[#, 2, 1] &] (* Amiram Eldar, Jul 24 2023 *)
PROG
(Haskell)
a262481 n = a262481_list !! (n-1)
a262481_list = filter (\x -> a000120 x == a020639 x) [1..]
(PARI) isok(n) = (n==1) || (hammingweight(n) == factor(n)[1, 1]); \\ Michel Marcus, Sep 29 2015
CROSSREFS
Subsequence of A052294.
Sequence in context: A315125 A316991 A316992 * A119689 A351614 A066038
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Sep 24 2015
STATUS
approved