login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} x^(n - b(n)) * (1+x)^b(n), where b(n) = A007814(n), which is the exponent of the highest power of 2 dividing n.
3

%I #27 Jul 06 2013 19:30:16

%S 1,2,2,3,1,3,4,4,1,2,2,3,2,6,7,5,1,2,2,3,1,3,4,4,1,2,2,4,6,12,11,6,1,

%T 2,2,3,1,3,4,4,1,2,2,3,2,6,7,5,1,2,2,3,1,3,4,4,1,2,3,9,16,22,16,7,1,2,

%U 2,3,1,3,4,4,1,2,2,3,2,6,7,5,1,2,2,3,1,3,4,4,1,2,2,4,6,12,11,6,1,2,2,3,1,3,4,4,1,2,2,3,2,6,7,5,1,2,2,3,1,3,4,4,1,3,9,24,36,37,22,8,1

%N G.f.: Sum_{n>=0} x^(n - b(n)) * (1+x)^b(n), where b(n) = A007814(n), which is the exponent of the highest power of 2 dividing n.

%C The g.f. of related sequence A227277 is: Sum_{n>=0} x^n*(1+x)^A007814(n).

%H Paul D. Hanna, <a href="/A227287/b227287.txt">Table of n, a(n) for n = 0..10000</a>

%F Limit of rows, when read in reverse, of A227277 when formatted into a triangle having 2^n terms in row n>=0.

%e G.f.: A(x) = 1 + 2*x + 2*x^2 + 3*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 2*x^12 + 6*x^13 + 7*x^14 + 5*x^15 + x^16 +...

%e where

%e A(x) = 1 + x + x^(2-1)*(1+x) + x^3 + x^(4-2)*(1+x)^2 + x^5 + x^(6-1)*(1+x) + x^7 + x^(8-3)*(1+x)^3 + x^9 + x^(10-1)*(1+x) + x^11 + x^(12-2)*(1+x)^2 + x^13 + x^(14-1)*(1+x) + x^(16-4)*(1+x)^4 +...

%e GENERATED AS A LIMIT FROM A227277.

%e Take A227277, ignore the initial 2 terms, then format as a triangle having 2^n terms in row n>=0; the resulting triangle begins:

%e 1;

%e 2, 1;

%e 3, 2, 2, 1;

%e 4, 4, 3, 1, 3, 2, 2, 1;

%e 5, 7, 6, 2, 3, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1;

%e 6, 11, 12, 6, 4, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1, 5, 7, 6, 2, 3, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1;

%e 7, 16, 22, 16, 9, 3, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1, 5, 7, 6, 2, 3, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1, 6, 11, 12, 6, 4, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1, 5, 7, 6, 2, 3, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1; ...

%e Note that the rows, when read in reverse, tend to this sequence as a limit.

%o (PARI) {a(n)=polcoeff(1+sum(k=1,n+#binary(n),x^(k-valuation(k,2))*(1+x)^valuation(k,2)+x*O(x^n)),n)}

%o for(n=0,128,print1(a(n),", "))

%Y Cf. A227277, A227318, A007814.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jul 04 2013