OFFSET
0,6
COMMENTS
FORMULA
G.f.: G=G(t,z) satisfies G = 1+z*G + t*z^2*g/(1-t*z^2*C), where C=1+z^2*C^2 and g=2/(1-2*z+sqrt(1-4*z^2)).
EXAMPLE
T(5,2)=2 because we have UUDDH and HUUDD, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
1;
1, 1;
1, 2;
1, 4, 1;
1, 7, 2;
1, 13, 5, 1;
1, 23, 9, 2;
1, 43, 19, 6, 1;
MAPLE
C := ((1-sqrt(1-4*z^2))*1/2)/z^2: g := 2/(1-2*z+sqrt(1-4*z^2)): G := (1-t*z^2*C+t*z^2*g)/((1-t*z^2*C)*(1-z)): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 30 2011
STATUS
approved