login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A191306
Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n having height of first peak equal to k.
1
1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 2, 1, 13, 5, 1, 1, 23, 9, 2, 1, 43, 19, 6, 1, 1, 78, 34, 11, 2, 1, 148, 69, 26, 7, 1, 1, 274, 125, 47, 13, 2, 1, 526, 251, 103, 34, 8, 1, 1, 988, 461, 187, 62, 15, 2, 1, 1912, 923, 397, 146, 43, 9, 1, 1, 3628, 1715, 727, 266, 79, 17, 2, 1, 7060, 3431, 1519, 596, 199, 53, 10, 1
OFFSET
0,6
COMMENTS
Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,1) = A036256(n-2).
Sum_{k>=0} k*T(n,k) = A191307(n).
FORMULA
G.f.: G=G(t,z) satisfies G = 1+z*G + t*z^2*g/(1-t*z^2*C), where C=1+z^2*C^2 and g=2/(1-2*z+sqrt(1-4*z^2)).
EXAMPLE
T(5,2)=2 because we have UUDDH and HUUDD, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
1;
1, 1;
1, 2;
1, 4, 1;
1, 7, 2;
1, 13, 5, 1;
1, 23, 9, 2;
1, 43, 19, 6, 1;
MAPLE
C := ((1-sqrt(1-4*z^2))*1/2)/z^2: g := 2/(1-2*z+sqrt(1-4*z^2)): G := (1-t*z^2*C+t*z^2*g)/((1-t*z^2*C)*(1-z)): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 30 2011
STATUS
approved