OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{k>=0} k*A191306(n,k).
G.f.: ((1-z-z^2)*sqrt(1-4*z^2) - (1-2*z)*(1+z-z^2))/(2*z^3*(1-z)*(1-2*z)).
a(n) ~ 2^(n+3/2)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 20 2014
Conjecture: -(n+3)*(n-2)*a(n) +(n^2+3*n-6)*a(n-1) +2*n*(2*n-3)*a(n-2) - 4*n*(n-1)*a(n-3)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=6 because, denoting U=(1,1), D=(1,-1), H=(1,0), in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD the sum of the heights of the first peaks is 0+1+1+1+1+2=6.
MAPLE
g:=(((1-z-z^2)*sqrt(1-4*z^2)-(1-2*z)*(1+z-z^2))*1/2)/(z^3*(1-z)*(1-2*z)): gser:=series(g, z=0, 40): seq(coeff(gser, z, n), n=0..35);
MATHEMATICA
CoefficientList[Series[(((1-x-x^2)*Sqrt[1-4*x^2]-(1-2*x)*(1+x-x^2))*1/2) /(x^3*(1-x)*(1-2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0], Vec(((1-z-z^2)*sqrt(1-4*z^2) - (1-2*z)*(1+z-z^2))/(2*z^3*(1-z)*(1-2*z)))) \\ G. C. Greubel, Mar 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 30 2011
STATUS
approved