login
A079118
a(n) = floor(1/(n-1) * Sum_{k=1..n-1} a(k)^(n/k)), given a(0)=1, a(1)=2, a(2)=6.
2
1, 2, 6, 11, 25, 57, 130, 297, 678, 1548, 3537, 8089, 18513, 42401, 97180, 222886, 511541, 1174805, 2699825, 6208514, 14286332, 32895382, 75793307, 174747004, 403156146, 930729690, 2150121210, 4970430222, 11497923316, 26615954928
OFFSET
0,2
EXAMPLE
a(4)=25 since 25 = floor[(1/3){2^(4/1) + 6^(4/2) + 11^(4/3)}].
CROSSREFS
Sequence in context: A079047 A160966 A052326 * A211054 A034466 A191307
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 27 2002
EXTENSIONS
Definition corrected by Georg Fischer, Jun 06 2024
STATUS
approved