login
A079116
a(n) = floor(1/(n-1) * Sum_{k=1..n-1} a(k)^(n/k)), given a(0)=1, a(1)=2, a(2)=3.
5
1, 2, 3, 6, 11, 21, 40, 75, 140, 262, 490, 917, 1719, 3221, 6042, 11339, 21293, 40011, 75226, 141522, 266400, 501765, 945632, 1783196, 3364584, 6352129, 11999522, 22681223, 42897140, 81180399, 153722283, 291264272, 552210166, 1047587957
OFFSET
0,2
EXAMPLE
a(4)=11 since 11 = floor[(1/3){2^(4/1) + 3^(4/2) + 6^(4/3)}].
CROSSREFS
Sequence in context: A123915 A132832 A316796 * A109222 A191789 A371790
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 27 2002
EXTENSIONS
Definition corrected by Georg Fischer, Jun 06 2024
STATUS
approved