login
a(n) = floor(1/(n-1) * Sum_{k=1..n-1} a(k)^(n/k)), given a(0)=1, a(1)=2, a(2)=3.
5

%I #8 Jun 06 2024 13:48:48

%S 1,2,3,6,11,21,40,75,140,262,490,917,1719,3221,6042,11339,21293,40011,

%T 75226,141522,266400,501765,945632,1783196,3364584,6352129,11999522,

%U 22681223,42897140,81180399,153722283,291264272,552210166,1047587957

%N a(n) = floor(1/(n-1) * Sum_{k=1..n-1} a(k)^(n/k)), given a(0)=1, a(1)=2, a(2)=3.

%e a(4)=11 since 11 = floor[(1/3){2^(4/1) + 3^(4/2) + 6^(4/3)}].

%Y Cf. A079117 - A079121.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 27 2002

%E Definition corrected by _Georg Fischer_, Jun 06 2024