login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247073
Triangle read by rows: T(n,k) is the number of k-th prime powers up to 2^n, for k = 1 to n.
1
1, 2, 1, 4, 1, 1, 6, 2, 1, 1, 11, 3, 2, 1, 1, 18, 4, 2, 1, 1, 1, 31, 5, 3, 2, 1, 1, 1, 54, 6, 3, 2, 2, 1, 1, 1, 97, 8, 4, 2, 2, 1, 1, 1, 1, 172, 11, 4, 3, 2, 2, 1, 1, 1, 1, 309, 14, 5, 3, 2, 2, 1, 1, 1, 1, 1, 564, 18, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1028, 24, 8, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1
OFFSET
1,2
LINKS
EXAMPLE
Up to 16, there are 6 primes (2, 3, 5, 7, 11, 13), 2 squared primes (4,9), 1 cube (8), and 1 fourth power (16), so 4th row is 6, 2, 1, 1.
Triangle starts:
1;
2, 1;
4, 1, 1;
6, 2, 1, 1;
11, 3, 2, 1, 1;
18, 4, 2, 1, 1, 1;
...
PROG
(PARI) tabl(nn) = {for (n=1, nn, v = vector(2^n, i, i); vr = vector(n); for (k=1, #v, if (pp = isprimepower(v[k]), vr[pp] ++); ); for (k=1, n, print1(vr[k], ", "); ); print(); ); }
(Haskell)
import Data.List (sort, groupBy); import Data.Function (on)
a247073 n k = a247073_tabl !! (n-1) !! (k-1)
a247073_tabl = map a247073_row [1..]
a247073_row n = map length $ groupBy ((==) `on` fst) $ sort $
takeWhile ((<= 2^n). snd) $ tail $ zip a025474_list a000961_list
-- Reinhard Zumkeller, Nov 18 2014
CROSSREFS
Cf. A000961 (prime powers), A007053 (first column), A060967 (second column).
Cf. A025474.
Sequence in context: A131034 A346873 A130313 * A124428 A191310 A124845
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Nov 18 2014
STATUS
approved