login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of k-th prime powers up to 2^n, for k = 1 to n.
1

%I #48 Nov 18 2014 15:04:49

%S 1,2,1,4,1,1,6,2,1,1,11,3,2,1,1,18,4,2,1,1,1,31,5,3,2,1,1,1,54,6,3,2,

%T 2,1,1,1,97,8,4,2,2,1,1,1,1,172,11,4,3,2,2,1,1,1,1,309,14,5,3,2,2,1,1,

%U 1,1,1,564,18,6,4,3,2,2,1,1,1,1,1,1028,24,8,4,3,2,2,2,1,1,1,1,1

%N Triangle read by rows: T(n,k) is the number of k-th prime powers up to 2^n, for k = 1 to n.

%H Reinhard Zumkeller, <a href="/A247073/b247073.txt">Rows n = 1..20 of triangle, flattened</a>

%e Up to 16, there are 6 primes (2, 3, 5, 7, 11, 13), 2 squared primes (4,9), 1 cube (8), and 1 fourth power (16), so 4th row is 6, 2, 1, 1.

%e Triangle starts:

%e 1;

%e 2, 1;

%e 4, 1, 1;

%e 6, 2, 1, 1;

%e 11, 3, 2, 1, 1;

%e 18, 4, 2, 1, 1, 1;

%e ...

%o (PARI) tabl(nn) = {for (n=1, nn, v = vector(2^n, i, i); vr = vector(n); for (k=1, #v, if (pp = isprimepower(v[k]), vr[pp] ++);); for (k=1, n, print1(vr[k], ", ");); print(););}

%o (Haskell)

%o import Data.List (sort, groupBy); import Data.Function (on)

%o a247073 n k = a247073_tabl !! (n-1) !! (k-1)

%o a247073_tabl = map a247073_row [1..]

%o a247073_row n = map length $ groupBy ((==) `on` fst) $ sort $

%o takeWhile ((<= 2^n). snd) $ tail $ zip a025474_list a000961_list

%o -- _Reinhard Zumkeller_, Nov 18 2014

%Y Cf. A000961 (prime powers), A007053 (first column), A060967 (second column).

%Y Cf. A025474.

%K nonn,tabl

%O 1,2

%A _Michel Marcus_, Nov 18 2014