login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247075
Expansion of e.g.f.: x^2*G'(x)/G(x)^2, where G(x) satisfies G(x) = x*(1+log(1+G(x))).
2
1, 0, -1, -2, 12, 96, -220, -7440, -15624, 813120, 7340112, -104165280, -2442773520, 8815815360, 855578733984, 4653629425536, -317564443445760, -5591544140206080, 110965435244017920, 4730495445765296640, -16883238483957574656
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n} k!*binomial(n-1,k)*Stirling1(n,k).
E.g.f.: x^2*G'(x)/G(x)^2 where G(x) = Series_Reversion(x/(1 + log(1+x))); see A177380. - Paul D. Hanna, Nov 17 2014
MAPLE
A:= n -> add(k!*binomial(n-1, k)*combinat:-stirling1(n, k), k=0..n):
seq(A(n), n=0..30); # Robert Israel, Nov 17 2014
MATHEMATICA
Table[Sum[StirlingS1[n, k] k! Binomial[n-1, k], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Nov 17 2014 *)
PROG
(Maxima)
a(n):=sum(k!*binomial(n-1, k)*stirling1(n, k), k, 0, n);
(Magma) [(&+[Factorial(j)*Binomial(n-1, j)*StirlingFirst(n, j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Mar 08 2023
(SageMath)
def A247075(n): return sum( (-1)^(n-k)*factorial(k)*binomial(n-1, k)*stirling_number1(n, k) for k in range(n+1))
[A247075(n) for n in range(21)] # G. C. Greubel, Mar 08 2023
CROSSREFS
Cf. A177380.
Sequence in context: A359692 A321057 A366334 * A239837 A239838 A306258
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Nov 17 2014
STATUS
approved