

A247071


Numbers n such that 2^n1 has only one primitive prime factor, sorted according to the magnitude of the corresponding prime.


0



2, 4, 3, 10, 12, 8, 18, 5, 20, 14, 9, 7, 15, 24, 16, 30, 21, 22, 26, 42, 13, 34, 40, 32, 54, 17, 38, 27, 19, 33, 46, 56, 90, 78, 62, 31, 80, 120, 126, 150, 86, 98, 49, 69, 65, 174, 77, 93, 122, 61, 85, 192, 170, 234, 158, 165, 147, 129, 184, 89, 208, 312
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Periods associated with A144755 in base 2. The binary analog of A051627.


LINKS

Table of n, a(n) for n=1..62.


EXAMPLE

2^12  1 = 4095 = 3 * 3 * 5 * 7 * 13, but none of 3, 5, 7 is a primitive prime factor, so the only primitive prime factor of 2^12  1 is 13.


MATHEMATICA

nmax = 65536; primesPeriods = Reap[Do[p = Cyclotomic[n, 2]/GCD[n, Cyclotomic[n, 2]]; If[PrimeQ[p], Print[n]; Sow[{p, n}]], {n, 1, nmax}]][[2, 1]]; Sort[primesPeriods][[All, 2]]


CROSSREFS

Cf. A161508, A161509, A144755, A007498, A007615, A051627, A040017.
Sequence in context: A208324 A277416 A064691 * A014664 A270600 A180871
Adjacent sequences: A247068 A247069 A247070 * A247072 A247073 A247074


KEYWORD

nonn


AUTHOR

Eric Chen, Nov 16 2014


STATUS

approved



