login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247068
Primes whose base-2 expansion has no two consecutive 1's.
2
2, 5, 17, 37, 41, 73, 137, 149, 257, 277, 293, 337, 521, 577, 593, 641, 661, 673, 677, 1033, 1061, 1093, 1097, 1109, 1153, 1193, 1289, 1297, 1301, 1321, 1361, 2053, 2069, 2081, 2089, 2113, 2129, 2213, 2309, 2341, 2377, 2389, 2593, 2633, 2689, 2693, 2729, 4129, 4133, 4177, 4229, 4241, 4261, 4357, 4373, 4421, 4649, 4673, 5153, 5189
OFFSET
1,1
COMMENTS
Also: numbers appearing in both A000040 and A003714. Is it known to be infinite?
LINKS
Estelle Basor, Brian Conrey, Kent E. Morrison, Knots and ones, arXiv:1703.00990 [math.GT], 2017. See page 1.
MAPLE
M:= 16: # to get all terms < 2^M
B1:= {1}:
B2:= {}:
for n from 2 to M-1 do
B3:= map(`+`, B1, 2^n);
B1:= B1 union B2;
B2:= B3;
od:
select(isprime, {2} union B1 union B2);
# if using Maple 11 or earlier, uncomment the next line
# sort(convert(%, list)); # Robert Israel, Nov 16 2014
MATHEMATICA
Select[Prime[Range[700]], SequenceCount[IntegerDigits[#, 2], {1, 1}]==0&] (* Harvey P. Dale, May 14 2022 *)
PROG
(Sage)
def a_list(M): # All terms < 2^M. After Robert Israel.
A = [1]; B = [2]; s = 4
for n in range(M-2):
C = [a + s for a in A]
A.extend(B)
B = C
s <<= 1
A.extend(B)
return list(filter(is_prime, A))
a_list(13) # Peter Luschny, Nov 16 2014
(PARI) my(t=bitand(n++, 2*n)); if(t==0, return(n)); my(o=#binary(t)-1); ((n>>o)+1)<<o
n=0; while(n<1e6, if(isprime(n=step(n)), print1(n", "))) \\ Charles R Greathouse IV, Nov 16 2014
CROSSREFS
Sequence in context: A125822 A025537 A245784 * A028916 A100272 A107630
KEYWORD
nonn,base
AUTHOR
Jeffrey Shallit, Nov 16 2014
STATUS
approved