The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093391 a(n) = floor(n/16) + floor((n+1)/16) + floor((n+2)/16) + floor((n+3)/16). 4
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 20, 20, 20 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,15 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,-1,0,-1,2,-1,0,-1,2,-1,0,-1,2,-1). FORMULA From R. J. Mathar, Mar 22 2011: (Start) a(n) = +2*a(n-1) -a(n-2) -a(n-4) +2*a(n-5) -a(n-6) -a(n-8) +2*a(n-9) -a(n-10) -a(n-12) +2*a(n-13) -a(n-14). G.f.: x^13/ ( (1+x^4)*(x^8+1)*(x-1)^2 ). (End) MATHEMATICA Total/@(Floor/@(Partition[Range[0, 90], 4, 1]/16)) (* Harvey P. Dale, Sep 21 2013 *) CoefficientList[Series[x^13 / ((1 + x^4) (x^8 + 1) (x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 16 2018 *) PROG (Haskell) a093391 n = sum \$ map ((flip div 16) . (+ n)) [0..3] -- Reinhard Zumkeller, Oct 10 2013 (PARI) a(n) = n\16 + (n+1)\16 + (n+2)\16 + (n+3)\16 \\ Andrew Howroyd, Feb 15 2018 (MAGMA) [Floor(n/16)+Floor((n+1)/16)+Floor((n+2)/16)+Floor((n+3)/16): n in [0..100]]; // Vincenzo Librandi, Feb 16 2018 CROSSREFS Cf. A004524, A093390, A093392. Cf. A054900. Sequence in context: A065686 A158411 A065680 * A210964 A029135 A196933 Adjacent sequences:  A093388 A093389 A093390 * A093392 A093393 A093394 KEYWORD nonn AUTHOR Reinhard Zumkeller, Mar 28 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 21:50 EDT 2021. Contains 345433 sequences. (Running on oeis4.)