OFFSET
1,6
COMMENTS
Considering the frequency of all decimal digits in leading position of prime numbers (A065681 - A065687), we cannot apply Benford's Law. But we observe at 10^e - levels that the frequency for 0 to 9 decreases monotonically, at least in the small range until 10^7.
The "begins with 9" sequence is too dull to include. - N. J. A. Sloane
Note that the primes do not satisfy Benford's law (see A000040). - N. J. A. Sloane, Feb 08 2017
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Benford's Law
EXAMPLE
MATHEMATICA
Accumulate[If[First[IntegerDigits[#]]==1, 1, 0]&/@Prime[Range[80]]] (* Harvey P. Dale, Jan 22 2013 *)
PROG
(PARI) lista(n) = { my(a=[p\10^logint(p, 10)==1 | p<-primes(n)]); for(i=2, #a, a[i]+=a[i-1]); a} \\ Harry J. Smith, Oct 26 2009
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Reinhard Zumkeller, Nov 13 2001
STATUS
approved