login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193669
Expansion of o.g.f.(1-x^4)/(1-x+x^8).
2
1, 1, 1, 1, 0, 0, 0, 0, -1, -2, -3, -4, -4, -4, -4, -4, -3, -1, 2, 6, 10, 14, 18, 22, 25, 26, 24, 18, 8, -6, -24, -46, -71, -97, -121, -139, -147, -141, -117, -71, 0, 97, 218, 357, 504, 645, 762, 833, 833, 736, 518, 161, -343, -988, -1750, -2583, -3416, -4152
OFFSET
0,10
COMMENTS
The Gi1 sums, see A180662, of triangle A108299 equal the terms of this sequence.
FORMULA
G.f.: -(x-1)*(1+x)*(x^2+1) / ( (x^2-x+1)*(x^6+x^5-x^3-x^2+1) ).
a(n) = a(n-1) - a(n-8), a(0) = a(1) = a(2) = a(3) = 1, a(4) = a(5) = a(6) = a(7) = 0.
MAPLE
A193669 := proc(n) option remember: coeftayl((1-x^4) / (1-x+x^8) , x=0, n) end: seq(A193669(n), n=0..57);
MATHEMATICA
CoefficientList[Series[(1-x^4)/(1-x+x^8), {x, 0, 80}], x] (* or *) LinearRecurrence[ {1, 0, 0, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 0, 0, 0, 0}, 80] (* Harvey P. Dale, Jul 16 2014 *)
CROSSREFS
Sequence in context: A030241 A062750 A368420 * A065686 A158411 A065680
KEYWORD
sign,easy
AUTHOR
Johannes W. Meijer, Aug 11 2011
STATUS
approved