login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193668 a(n) = Sum_{i=0..n-1} (n+i)*a(n-1-i) for n>1, a(0)=1, a(1)=1. 3
1, 1, 5, 24, 134, 866, 6392, 53198, 493628, 5057522, 56741240, 692118422, 9122245508, 129220379978, 1958059133552, 31607140330670, 541515698082332, 9814691158604258, 187629572002767848, 3773371262361852422, 79636835475910932020 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Occurs in making the Q-residue A193657.

Second difference of A002627. - Peter Luschny, May 30 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

Recurrence: a(n) = (n+2)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Nov 20 2012

a(n) ~ n!*n*(e-1). - Vaclav Kotesovec, Nov 20 2012

a(n) = (n-n^2-1)*Gamma(n) + e*(n*Gamma(n+1,1)-(n-1)*Gamma(n,1)) for n>0. - Peter Luschny, May 30 2014.

MAPLE

a := n -> `if`(n=0, 1, (n-n^2-1)*GAMMA(n)+exp(1)*((1-n)*GAMMA(n, 1) + n*GAMMA(n+1, 1))): seq(simplify(a(n)), n=0..20); # Peter Luschny, May 30 2014

MATHEMATICA

(See A193657.)

Flatten[{1, RecurrenceTable[{(n-2)*a[n-2] - (n+2)*a[n-1] + a[n] == 0, a[1]==1, a[2]==5}, a, {n, 20}]}] (* Vaclav Kotesovec, Nov 20 2012 *)

CoefficientList[Series[Log[x-1]+E*Gamma[0, 1-x]-E*Gamma[0, 1]+1-I*Pi+(E^x*x-x^2)/(x-1)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 20 2012 *)

PROG

(PARI) a(n)=if(n<2, 1, sum(i=0, n-1, (n+i)*a(n-1-i))) \\ Charles R Greathouse IV, May 30 2014

CROSSREFS

Cf. A193657, A002627.

Sequence in context: A020067 A066118 A002709 * A009411 A080996 A020055

Adjacent sequences:  A193665 A193666 A193667 * A193669 A193670 A193671

KEYWORD

nonn

AUTHOR

Clark Kimberling, Aug 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 22:55 EDT 2021. Contains 346340 sequences. (Running on oeis4.)