The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005260 a(n) = Sum_{k = 0..n} binomial(n,k)^4. (Formerly M2110) 60

%I M2110

%S 1,2,18,164,1810,21252,263844,3395016,44916498,607041380,8345319268,

%T 116335834056,1640651321764,23365271704712,335556407724360,

%U 4854133484555664,70666388112940818,1034529673001901732

%N a(n) = Sum_{k = 0..n} binomial(n,k)^4.

%C This sequence is s_10 in Cooper's paper. - _Jason Kimberley_, Nov 25 2012

%C Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y*z + x*y*z + w*x + y*z)). - _Gheorghe Coserea_, Jul 13 2016

%C This is one of the Apéry-like sequences - see Cross-references. - _Hugo Pfoertner_, Aug 06 2017

%C Every prime eventually divides some term of this sequence. - _Amita Malik_, Aug 20 2017

%C Two walkers, A and B, stand on the South-West and North-East corners of an n X n grid, respectively. A walks by either North or East steps while B walks by either South or West steps. Sequence values a(n) < binomial(2*n,n)^2 count the simultaneous walks where A and B meet after exactly n steps and change places after 2*n steps. - _Bradley Klee_, Apr 01 2019

%C a(n) is the constant term in the expansion of ((1 + x) * (1 + y) * (1 + z) + (1 + 1/x) * (1 + 1/y) * (1 + 1/z))^n. - _Seiichi Manyama_, Oct 27 2019

%D H. W. Gould, Combinatorial Identities, Morgantown, 1972, (X.14), p. 79.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A005260/b005260.txt">Table of n, a(n) for n = 0..834</a> (terms 0..250 from Jason Kimberley)

%H B. Adamczewski, J. P. Bell, and E. Delaygue, <a href="https://arxiv.org/abs/1603.04187">Algebraic independence of G-functions and congruences "a la Lucas"</a>, arXiv preprint arXiv:1603.04187 [math.NT], 2016.

%H Hacene Belbachir and Yassine Otmani, <a href="https://arxiv.org/abs/2012.02563">A Strehl Version of Fourth Franel Sequence</a>, arXiv:2012.02563 [math.CO], 2020.

%H F. Beukers, <a href="http://dx.doi.org/10.1016/0022-314X(87)90025-4">Another congruence for the Apéry numbers</a>, J. Number Theory 25 (1987), no. 2, 201-210.

%H W. Y. C. Chen, Q.-H. Hou, and Y-P. Mu, <a href="http://dx.doi.org/10.1016/j.cam.2005.10.010">A telescoping method for double summations</a>, J. Comp. Appl. Math. 196 (2006) 553-566, eq (5.5).

%H S. Cooper, <a href="http://dx.doi.org/10.1007/s11139-011-9357-3">Sporadic sequences, modular forms and new series for 1/pi</a>, Ramanujan J. (2012).

%H M. Coster, <a href="/A001850/a001850_1.pdf">Email, Nov 1990</a>

%H E. Delaygue, <a href="http://arxiv.org/abs/1310.4131">Arithmetic properties of Apéry-like numbers</a>, arXiv preprint arXiv:1310.4131 [math.NT], 2013.

%H C. Elsner, <a href="http://www.fq.math.ca/Papers1/43-1/paper43-1-5.pdf">On recurrence formulas for sums involving binomial coefficients</a>, Fib. Q., 43,1 (2005), 31-45.

%H Ofir Gorodetsky, <a href="https://arxiv.org/abs/2102.11839">New representations for all sporadic Apéry-like sequences, with applications to congruences</a>, arXiv:2102.11839 [math.NT], 2021. See s10 p. 3.

%H Darij Grinberg, <a href="http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf">Introduction to Modern Algebra</a> (UMN Spring 2019 Math 4281 Notes), University of Minnesota (2019).

%H Amita Malik and Armin Straub, <a href="https://doi.org/10.1007/s40993-016-0036-8">Divisibility properties of sporadic Apéry-like numbers</a>, Research in Number Theory, 2016, 2:5.

%H Robert Osburn, Armin Straub, and Wadim Zudilin, <a href="https://arxiv.org/abs/1701.04098">A modular supercongruence for 6F5: an Apéry-like story</a>, arXiv:1701.04098 [math.NT], 2017.

%H M. A. Perlstadt, <a href="http://dx.doi.org/10.1016/0022-314X(87)90069-2">Some Recurrences for Sums of Powers of Binomial Coefficients</a>, Journal of Number Theory 27 (1987), pp. 304-309.

%H V. Strehl, <a href="http://www.mat.univie.ac.at/~slc/opapers/s29strehl.html">Recurrences and Legendre transform</a>, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.

%H Zhi-Wei Sun, <a href="http://maths.nju.edu.cn/~zwsun/191o.pdf">Open conjectures on congruences</a>, Nanjing Univ. J. Math. Biquarterly 36(2019), no.1, 1-99. (Cf. Conjectures 49-51.)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BinomialSums.html">Binomial Sums</a>

%H Mark C. Wilson, <a href="http://www.cs.auckland.ac.nz/~mcw/Research/Outputs/Wils2013.pdf">Diagonal asymptotics for products of combinatorial classes</a>, preprint of Combinatorics, Probability and Computing, 24(1), 2015, 354-372.

%F a(n) ~ 2^(1/2)*Pi^(-3/2)*n^(-3/2)*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 21 2002

%F D-finite with recurrence: n^3*a(n) = 2*(2*n - 1)*(3*n^2 - 3*n + 1)*a(n-1) + (4*n - 3)*(4*n - 4)*(4*n - 5)*a(n-2).

%F G.f.: 5*hypergeom([1/8, 3/8],, (4/5)*((1-16*x)^(1/2)+(1+4*x)^(1/2))*(-(1-16*x)^(1/2)+(1+4*x)^(1/2))^5/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2))^4)^2/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2)). - _Mark van Hoeij_, Oct 29 2011.

%F 1/Pi = sqrt(15)/18 * Sum_{n >= 0} a(n)*(4*n + 1)/36^n (Cooper, equation (5)) = sqrt(15)/18 * Sum_{n >= 0} a(n)*A016813(n)/A009980(n). - _Jason Kimberley_, Nov 26 2012

%F 0 = (-x^2 + 12*x^3 + 64*x^4)*y''' + (-3*x + 54*x^2 + 384*x^3)*y'' + (-1 + 40*x + 444*x^2)*y' + (2 + 60*x)*y, where y is g.f. - _Gheorghe Coserea_, Jul 13 2016

%F For r a nonnegative integer, Sum_{k = r..n} C(k,r)^4*C(n,k)^4 = C(n,r)^4*a(n-r), where we take a(n) = 0 for n < 0. - _Peter Bala_, Jul 27 2016

%F a(n) = hypergeom([-n, -n, -n, -n], [1, 1, 1], 1). - _Peter Luschny_, Jul 27 2016

%F Sum_{n>=0} a(n) * x^n / (n!)^4 = (Sum_{n>=0} x^n / (n!)^4)^2. - _Ilya Gutkovskiy_, Jul 17 2020

%F a(n) = Sum_{k=0..n}C(n,k)*C(n+k,k)*C(2k,k)*C(2n-2k,n-k)*(-1)^(n-k). This can be proved via the Zeilberger algorithm. - _Zhi-Wei Sun_, Aug 23 2020

%F a(n) = (-1)^n*binomial(2*n, n)*hypergeom([1/2, -n, -n, n + 1], [1, 1, 1/2 - n], 1). - _Peter Luschny_, Aug 24 2020

%F a(n) = Sum_{k=0..n} binomial(n,k)^2*binomial(2*k,n)*binomial(2*n-k,n) [Theorem 1 in Belbachir and Otmani]. - _Michel Marcus_, Dec 06 2020

%e G.f. = 1 + 2*x + 18*x^2 + 164*x^3 + 1810*x^4 + 21252*x^5 + 263844*x^6 + ...

%p A005260 := proc(n)

%p add( (binomial(n,k))^4,k=0..n) ;

%p end proc:

%p seq(A005260(n),n=0..10) ; # _R. J. Mathar_, Nov 19 2012

%t Table[Sum[Binomial[n, k]^4, {k, 0, n}], {n, 0, 20}] (* _Wesley Ivan Hurt_, Mar 09 2014 *)

%o (PARI) {a(n) = sum(k=0, n, binomial(n, k)^4)};

%Y Column k=4 of A309010.

%Y Cf. A000172, A096192, A328725.

%Y Related to diagonal of rational functions: A268545-A268555.

%Y The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

%Y Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.

%K nonn,easy,changed

%O 0,2

%A _N. J. A. Sloane_

%E Edited by _Michael Somos_, Aug 09 2002

%E Minor edits by _Vaclav Kotesovec_, Aug 28 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 07:44 EDT 2021. Contains 342843 sequences. (Running on oeis4.)