The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182421 a(n) = Sum_{k = 0..n} C(n,k)^7. 12
 1, 2, 130, 4376, 312706, 20156252, 1622278624, 132282417920, 11716609750402, 1067553850832372, 101275413131018380, 9844149854624122160, 980597565209377223200, 99518148302583383833280, 10272819477206557916630080, 1075608762378043981968997376 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Vaclav Kotesovec, Recurrence (of order 4) M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309. Jin Yuan, Zhi-Juan Lu, Asmus L. Schmidt, On recurrences for sums of powers of binomial coefficients, J. Numb. Theory 128 (2008) 2784-2794 FORMULA Asymptotic (p = 7): a(n) ~ 2^(p*n)/sqrt(p)*(2/(Pi*n))^((p - 1)/2)*( 1 - (p - 1)^2/(4*p*n) + O(1/n^2) ). For r a nonnegative integer, Sum_{k = r..n} C(k,r)^7*C(n,k)^7 = C(n,r)^7*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016 Sum_{n>=0} a(n) * x^n / (n!)^7 = (Sum_{n>=0} x^n / (n!)^7)^2. - Ilya Gutkovskiy, Jul 17 2020 MAPLE a := n -> hypergeom([seq(-n, i=1..7)], [seq(1, i=1..6)], -1): seq(simplify(a(n)), n=0..15); # Peter Luschny, Jul 27 2016 MATHEMATICA Table[Total[Binomial[n, Range[0, n]]^7], {n, 0, 20}] (* T. D. Noe, Apr 28 2012 *) PROG (PARI) a(n) = sum(k=0, n, binomial(n, k)^7); \\ Michel Marcus, Jul 17 2020 CROSSREFS Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295. Sequence in context: A259109 A190578 A098533 * A218434 A354054 A303445 Adjacent sequences: A182418 A182419 A182420 * A182422 A182423 A182424 KEYWORD nonn,easy AUTHOR Vaclav Kotesovec, Apr 28 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 01:21 EDT 2024. Contains 375002 sequences. (Running on oeis4.)