login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182421
a(n) = Sum_{k = 0..n} C(n,k)^7.
12
1, 2, 130, 4376, 312706, 20156252, 1622278624, 132282417920, 11716609750402, 1067553850832372, 101275413131018380, 9844149854624122160, 980597565209377223200, 99518148302583383833280, 10272819477206557916630080, 1075608762378043981968997376
OFFSET
0,2
LINKS
Vaclav Kotesovec, Recurrence (of order 4)
M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
Jin Yuan, Zhi-Juan Lu, Asmus L. Schmidt, On recurrences for sums of powers of binomial coefficients, J. Numb. Theory 128 (2008) 2784-2794
FORMULA
Asymptotic (p = 7): a(n) ~ 2^(p*n)/sqrt(p)*(2/(Pi*n))^((p - 1)/2)*( 1 - (p - 1)^2/(4*p*n) + O(1/n^2) ).
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^7*C(n,k)^7 = C(n,r)^7*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
Sum_{n>=0} a(n) * x^n / (n!)^7 = (Sum_{n>=0} x^n / (n!)^7)^2. - Ilya Gutkovskiy, Jul 17 2020
MAPLE
a := n -> hypergeom([seq(-n, i=1..7)], [seq(1, i=1..6)], -1):
seq(simplify(a(n)), n=0..15); # Peter Luschny, Jul 27 2016
MATHEMATICA
Table[Total[Binomial[n, Range[0, n]]^7], {n, 0, 20}] (* T. D. Noe, Apr 28 2012 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)^7); \\ Michel Marcus, Jul 17 2020
CROSSREFS
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
Sequence in context: A259109 A190578 A098533 * A218434 A354054 A303445
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Apr 28 2012
STATUS
approved