login
A218434
Sum of the 7th powers of the numbers of standard Young tableaux over all partitions of n.
2
1, 1, 2, 130, 4504, 468956, 298313896, 134324703472, 76943411156480, 75584451935796484, 231249690461453112208, 784105479220668188046200, 2566797235899935973173794336, 9244479688068495046254956909968, 48983678227627955151056666560212512
OFFSET
0,3
LINKS
Wikipedia, Young tableau
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0, h(l)^7, `if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i]))))
end:
a:= n-> `if`(n=0, 1, g(n, n, [])):
seq(a(n), n=0..20);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^7, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, {}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)
CROSSREFS
Column k=7 of A208447.
Sequence in context: A190578 A098533 A182421 * A354054 A303445 A158110
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 28 2012
STATUS
approved