login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342295
a(n) = Sum_{k = 0..n} binomial(n,k)^12.
12
1, 2, 4098, 1062884, 2210336770, 2000488281252, 4355497029345924, 6773152698818628936, 15744083665278445490178, 32270900877696351763796420, 80314784333143089874093429348, 192454957455454582636391397662856, 509571049488109525160616367158261124
OFFSET
0,2
LINKS
M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
FORMULA
a(n) ~ 2^(p*n)/sqrt(p) * (2/(Pi*n))^((p-1)/2) * (1 - (p-1)^2/(4*p*n)), set p=12. - Vaclav Kotesovec, Aug 04 2022
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)^12); \\ Michel Marcus, Mar 27 2021
CROSSREFS
Column 12 of A309010.
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
Sequence in context: A367436 A024035 A048831 * A114722 A135959 A105667
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 27 2021
STATUS
approved