

A228289


Determinant of the p_n X p_n matrix with (i,j)entry equal to D(i+j) for all i,j = 0,...,p_n1, where D(k) = A002895(k) is the kth Domb number and p_n is the nth prime.


2



12, 2448, 428587718400, 4994319435309277891448832, 191901511752240055024005979549622856313555581586068578283027431424, 637213222716753775758429677219909335140503764595701930312765250413280716374852064945052319744
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: If p_n == 1 (mod 3) and p_n = x^2 + 3*y^2 with x and y integers, then we have a(n) == (1)^{(p_n1)/2}*(4*x^22*p_n) (mod p_n^2). In the case p_n == 2 (mod 3), we have a(n) == 0 (mod p_n^2).
ZhiWei Sun also made the following similar conjecture:
If p is an odd prime and b(p) is the p X p determinant with (i,j)entry equal to A053175(i+j) for all i,j = 0,...,p1, then we have the supercongruence b(p) == (1)^{(p1)/2} (mod p^2).


REFERENCES

ZhiWei Sun, Conjectures and results on x^2 mod p^2 with 4*p = x^2 + d*y^2, in: Number Theory and Related Area (eds., Y. Ouyang, C. Xing, F. Xu and P. Zhang), Higher Education Press & International Press, Beijing and Boston, 2013, pp. 147195.


LINKS

Table of n, a(n) for n=1..6.


MATHEMATICA

d[n_]:=Sum[Binomial[n, k]^2*Binomial[2k, k]Binomial[2(nk), nk], {k, 0, n}]
a[n_]:=Det[Table[d[i+j], {i, 0, Prime[n]1}, {j, 0, Prime[n]1}]]
Table[a[n], {n, 1, 8}]


CROSSREFS

Cf. A002895, A053175, A225776, A228143.
Sequence in context: A135398 A203426 A268589 * A306391 A195536 A010053
Adjacent sequences: A228286 A228287 A228288 * A228290 A228291 A228292


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Aug 19 2013


STATUS

approved



