|
|
A225776
|
|
Determinant of the (n+1) X (n+1) matrix with (i,j)-entry equal to f(i+j) for all i,j = 0,...,n, where f(k) = A000172(k) is the k-th Franel number.
|
|
3
|
|
|
1, 6, 180, 28296, 23762160, 103179627360, 2242514387116224, 244558402519846478976, 136585911664795732792710912, 392586698202941899973146848809472, 5721548125375080140228462836137111413760
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Conjecture: a(n)/6^n is always a positive odd integer. Moreover, for any integers r > 1 and n >= 0, the number a(r,n)/2^n is a positive odd integer, where a(r,n) denotes the Hankel determinant |f(r,i+j)|_{i,j=0,...,n} with f(r,k) = sum_{j=0}^k C(k,j)^r.
On Aug 20 2013, Zhi-Wei Sun made the following conjecture: If p is a prime congruent to 1 mod 4 but p is not congruent to 1 mod 24, then p divides a((p-1)/2).
|
|
LINKS
|
|
|
EXAMPLE
|
a(0) = 1 since f(0+0) = 1.
|
|
MATHEMATICA
|
f[n_]:=Sum[Binomial[n, k]^3, {k, 0, n}]; a[n_]:=Det[Table[f[i+j], {i, 0, n}, {j, 0, n}]]; Table[a[n], {n, 0, 10}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|