login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228290 a(n) = n^6 + n^5 + n^4 + n^3 + n^2 + n. 2
0, 6, 126, 1092, 5460, 19530, 55986, 137256, 299592, 597870, 1111110, 1948716, 3257436, 5229042, 8108730, 12204240, 17895696, 25646166, 36012942, 49659540, 67368420, 90054426, 118778946, 154764792, 199411800, 254313150, 321272406, 402321276, 499738092 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: -6*x*(7*x^4+42*x^3+56*x^2+14*x+1)/(x-1)^7.

a(n) = (n+1)*(n^2+n+1)*a(n-1)/((n-1)*(n^2-3*n+3)) for n>1.

a(1) = 6, else a(n) = (n^7-n)/(n-1).

a(n) = 6*A059721(n) = n*(n+1)*(1+n+n^2)*(1-n+n^2). - R. J. Mathar, Aug 21 2013

a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7) for n>6, a(0)=0, a(1)=6, a(2)=126, a(3)=1092, a(4)=5460, a(5)=19530, a(6)=55986. - Yosu Yurramendi, Sep 03 2013

MAPLE

a:= n-> (1+(1+(1+(1+(1+n)*n)*n)*n)*n)*n:

seq(a(n), n=0..30);

# second Maple program:

a:= proc(n) option remember; `if`(n<2, 6*n,

      (n+1)*(n^2+n+1)*a(n-1)/((n-1)*(n^2-3*n+3)))

    end:

seq(a(n), n=0..30);

# third Maple program:

a:= n-> `if`(n=1, 6, (n^7-n)/(n-1)):

seq(a(n), n=0..30);

PROG

(R)

a <- c(0, 6, 126, 1092, 5460, 19530, 55986)

for(n in (length(a)+1):30) a[n] <- 7*a[n-1] -21*a[n-2] +35*a[n-3] -35*a[n-4] +21*a[n-5] -7*a[n-6] +a[n-7]

a

[Yosu Yurramendi, Sep 03 2013]

(PARI) a(n) = n^6 + n^5 + n^4 + n^3 + n^2 + n; \\ Joerg Arndt, Sep 03 2013

CROSSREFS

Column k=6 of A228275.

Sequence in context: A254544 A268685 A109820 * A004993 A237428 A255900

Adjacent sequences:  A228287 A228288 A228289 * A228291 A228292 A228293

KEYWORD

nonn,easy

AUTHOR

Alois P. Heinz, Aug 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 3 22:17 EDT 2022. Contains 357237 sequences. (Running on oeis4.)