The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002895 Domb numbers: number of 2n-step polygons on diamond lattice.
(Formerly M3626 N1473)

%I M3626 N1473

%S 1,4,28,256,2716,31504,387136,4951552,65218204,878536624,12046924528,

%T 167595457792,2359613230144,33557651538688,481365424895488,

%U 6956365106016256,101181938814289564,1480129751586116848,21761706991570726096,321401321741959062016

%N Domb numbers: number of 2n-step polygons on diamond lattice.

%C a(n) is the (2n)th moment of the distance from the origin of a 4-step random walk in the plane. - Peter M.W. Gill (peter.gill(AT)nott.ac.uk), Mar 03 2004

%C Row sums of the cube of A008459. - _Peter Bala_, Mar 05 2013

%C Conjecture: Let D(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0..n. Then the number D(n)/12^n is always a positive odd integer. - _Zhi-Wei Sun_, Aug 14 2013

%C It appears that the expansions exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 22*x^2 + 152*x^3 + 1241*x^4 + ... and exp( Sum_{n >= 1} 1/4*a(n)*x^n/n ) = 1 + x + 4*x^2 + 25*x^3 + 199*x^4 + ... have integer coefficients. See A267219. - _Peter Bala_, Jan 12 2016

%C This is one of the Apéry-like sequences - see Cross-references. - _Hugo Pfoertner_, Aug 06 2017

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Indranil Ghosh, <a href="/A002895/b002895.txt">Table of n, a(n) for n = 0..832</a> (terms 0..100 from T. D. Noe)

%H B. Adamczewski, J. P. Bell, and E. Delaygue, <a href="http://arxiv.org/abs/1603.04187">Algebraic independence of G-functions and congruences "a la Lucas"</a>, arXiv preprint arXiv:1603.04187 [math.NT], 2016.

%H David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008.

%H J. M. Borwein, <a href="https://www.carma.newcastle.edu.au/jon/beauty.pdf">A short walk can be beautiful</a>, 2015.

%H J. M. Borwein, <a href="https://www.carma.newcastle.edu.au/jon/OEIStalk.pdf">Adventures with the OEIS: Five sequences Tony may like</a>, Guttman 70th [Birthday] Meeting, 2015, revised May 2016.

%H J. M. Borwein, <a href="/A060997/a060997.pdf">Adventures with the OEIS: Five sequences Tony may like</a>, Guttman 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]

%H Jonathan M. Borwein and Armin Straub, <a href="http://www.carma.newcastle.edu.au/~jb616/wmi-paper.pdf">Mahler measures, short walks and log-sine integrals</a> (2012).

%H Jonathan M. Borwein, Armin Straub and Christophe Vignat, <a href="http://www.carma.newcastle.edu.au/jon/dwalks.pdf">Densities of short uniform random walks, Part II: Higher dimensions</a>, Preprint, 2015.

%H Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, <a href="http://www.carma.newcastle.edu.au/~jb616/walks.pdf">Random Walk Integrals</a>, 2010.

%H Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, <a href="https://arxiv.org/abs/2001.00393">Stieltjes moment sequences for pattern-avoiding permutations</a>, arXiv:2001.00393 [math.CO], 2020.

%H H. Huat Chan, Song Heng Chan, and Zhiguo Liu, <a href="http://dx.doi.org/10.1016/j.aim.2003.07.012">Domb's numbers and Ramanujan-Sato type series for 1/pi</a>, Adv. Math. 186 (2004) 396.

%H Shaun Cooper, J. G. Wan and W. Zudilin, <a href="https://arxiv.org/abs/1512.04608">Holonomic alchemy and series for 1/pi</a>, arXiv preprint arXiv:1512.04608 [math.NT], 2015.

%H E. Delaygue, <a href="http://arxiv.org/abs/1310.4131">Arithmetic properties of Apery-like numbers</a>, arXiv preprint arXiv:1310.4131 [math.NT], 2013-2015.

%H C. Domb, <a href="http://dx.doi.org/10.1080/00018736000101199">On the theory of cooperative phenomena in crystals</a>, Advances in Phys., 9 (1960), 149-361.

%H Ofir Gorodetsky, <a href="https://arxiv.org/abs/2102.11839">New representations for all sporadic Apéry-like sequences, with applications to congruences</a>, arXiv:2102.11839 [math.NT], 2021. See alpha p. 3.

%H J. A. Hendrickson, Jr., <a href="http://dx.doi.org/10.1080/00949659508811639">On the enumeration of rectangular (0,1)-matrices</a>, Journal of Statistical Computation and Simulation, 51 (1995), 291-313.

%H Ji-Cai Liu, <a href="https://arxiv.org/abs/2008.02647">Supercongruences for sums involving Domb numbers</a>, arXiv:2008.02647 [math.NT], 2020.

%H Rui-Li Liu and Feng-Zhen Zhao, <a href="https://www.emis.de/journals/JIS/VOL21/Liu/liu19.html">New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences</a>, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.

%H Yen Lee Loh, <a href="https://arxiv.org/abs/1706.03083">A general method for calculating lattice Green functions on the branch cut</a>, arXiv:1706.03083 [math-ph], 2017.

%H Amita Malik and Armin Straub, <a href="https://doi.org/10.1007/s40993-016-0036-8">Divisibility properties of sporadic Apéry-like numbers</a>, Research in Number Theory, 2016, 2:5

%H Robert Osburn and Brundaban Sahu, <a href="http://maths.ucd.ie/~osburn/superdomb.pdf">A supercongruence for generalized Domb numbers</a>.

%H L. B. Richmond and J. Shallit, <a href="http://arxiv.org/abs/0807.5028">Counting Abelian Squares</a>, arXiv:0807.5028 [math.CO], 2008.

%H Armin Straub, <a href="http://arminstraub.com/pub/dissertation">Arithmetic aspects of random walks and methods in definite integration</a>, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012.

%H Zhi-Hong Sun, <a href="https://arxiv.org/abs/2002.12072">Super congruences concerning binomial coefficients and Apéry-like numbers</a>, arXiv:2002.12072 [math.NT], 2020.

%H Zhi-Hong Sun, <a href="https://arxiv.org/abs/2004.07172">New congruences involving Apéry-like numbers</a>, arXiv:2004.07172 [math.NT], 2020.

%H Z.-W. Sun, <a href="http://math.nju.edu.cn/~zwsun/142p.pdf">Conjectures involving arithmetical sequences</a>, Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258. [broken link]

%H H. A. Verrill, <a href="https://arxiv.org/abs/math/0407327">Sums of squares of binomial coefficients, with applications to Picard-Fuchs equations</a>, arXiv:math/0407327 [math.CO], 2004.

%H Chen Wang, <a href="https://arxiv.org/abs/2003.09888">Supercongruences and hypergeometric transformations</a>, arXiv:2003.09888 [math.NT], 2020.

%H Yi Wang and Bao-Xuan Zhu, <a href="http://arxiv.org/abs/1303.5595">Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences</a>, arXiv preprint arXiv:1303.5595 [math.CO], 2013.

%H Bao-Xuan Zhu, <a href="http://arxiv.org/abs/1309.6025">Higher order log-monotonicity of combinatorial sequences</a>, arXiv preprint arXiv:1309.6025 [math.CO], 2013.

%F a(n) = Sum_{k=0..n} binomial(n, k)^2 * binomial(2n-2k, n-k) * binomial(2k, k).

%F D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(5*n^2-5*n+2)*a(n-1) - 64*(n-1)^3*a(n-2). - _Vladeta Jovovic_, Jul 16 2004

%F Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^4. - _Vladeta Jovovic_, Aug 01 2006

%F G.f.: hypergeom([1/6, 1/3],[1],108*x^2/(1-4*x)^3)^2/(1-4*x). - _Mark van Hoeij_, Oct 29 2011

%F From _Zhi-Wei Sun_, Mar 20 2013: (Start)

%F Via the Zeilberger algorithm, _Zhi-Wei Sun_ proved that:

%F (1) 4^n*a(n) = Sum_{k = 0..n} (binomial(2k,k)*binomial(2(n-k),n-k))^3/ binomial(n,k)^2,

%F (2) a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(2k,n)*binomial(2k,k)* binomial(2(n-k),n-k). (End)

%F a(n) ~ 2^(4*n+1)/((Pi*n)^(3/2)). - _Vaclav Kotesovec_, Aug 20 2013

%F G.f. y=A(x) satisfies: 0 = x^2*(4*x - 1)*(16*x - 1)*y''' + 3*x*(128*x^2 - 30*x + 1)*y'' + (448*x^2 - 68*x + 1)*y' + 4*(16*x - 1)*y. - _Gheorghe Coserea_, Jun 26 2018

%F a(n) = Sum_{p+q+r+s=n} (n!/(p!*q!*r!*s!))^2 with p,q,r,s >= 0. See Verrill, p. 5. - _Peter Bala_, Jan 06 2020

%p A002895 := n -> add(binomial(n,k)^2*binomial(2*n-2*k,n-k)*binomial(2*k,k), k=0..n): seq(A002895(n), n=0..25); # _Wesley Ivan Hurt_, Dec 20 2015

%p A002895 := n -> binomial(2*n,n)*hypergeom([1/2, -n, -n, -n],[1, 1, 1/2 - n], 1):

%p seq(simplify(A002895(n)), n=0..19); # _Peter Luschny_, May 23 2017

%t Table[Sum[Binomial[n,k]^2 Binomial[2n-2k,n-k]Binomial[2k,k],{k,0,n}], {n,0,30}] (* _Harvey P. Dale_, Aug 15 2011 *)

%t a[n_] = Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n, -n}, {1, 1, 1/2-n}, 1]; (* or *) a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^4, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Dec 30 2013, after _Vladeta Jovovic_ *)

%t max = 19; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 3] (* _Jean-François Alcover_, Mar 24 2015, after _Peter Bala_ *)

%o (PARI) C=binomial;

%o a(n) = sum(k=0,n, C(n,k)^2 * C(2*n-2*k,n-k) * C(2*k,k) );

%o /* _Joerg Arndt_, Apr 19 2013 */

%Y Cf. A002893, A008459, A169714, A169715, A228289, A267219.

%Y The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

%Y For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

%K nonn,easy,nice,walk,changed

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, Mar 11 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 13:10 EST 2021. Contains 341707 sequences. (Running on oeis4.)