login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(2n,n)^3.
(Formerly M4580 N1952)
36

%I M4580 N1952 #117 Oct 18 2024 11:42:44

%S 1,8,216,8000,343000,16003008,788889024,40424237568,2131746903000,

%T 114933031928000,6306605327953216,351047164190381568,

%U 19774031697705428416,1125058699232216000000,64561313052442296000000

%N a(n) = binomial(2n,n)^3.

%C Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*z + x + y + z)). - _Gheorghe Coserea_, Jul 14 2016

%C Conjecture: The g.f. is also the diagonal of the rational function 1/(1 - (x + y)*(1 - 4*z*t) - z - t) = 1/det(I - M*diag(x, y, z, t)), I the 4 x 4 unit matrix and M the 4 x 4 matrix [1, 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, -1; 1 , 1, -1, 1]. If true, then a(n) = [(x*y*z)^n] (1 + x + y + z)^(2*n)*(1 + x + y - z)^n*(1 + x - y + z)^n. - _Peter Bala_, Apr 10 2022

%D S. Ramanujan, Modular Equations and Approximations to pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 36, equation (25).

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A002897/b002897.txt">Table of n, a(n) for n = 0..100</a>

%H David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008.

%H C. Domb, <a href="http://dx.doi.org/10.1080/00018736000101199">On the theory of cooperative phenomena in crystals</a>, Advances in Phys., 9 (1960), 149-361.

%H Timothy Huber, Daniel Schultz, and Dongxi Ye, <a href="https://doi.org/10.4064/aa220621-19-12">Ramanujan-Sato series for 1/pi</a>, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.

%H Yen Lee Loh, <a href="https://arxiv.org/abs/1706.03083">A general method for calculating lattice Green functions on the branch cut</a>, arXiv:1706.03083 [math-ph], 2017.

%H Armin Straub, <a href="http://dx.doi.org/10.2140/ant.2014.8.1985">Multivariate Apéry numbers and supercongruences of rational functions</a>, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; <a href="https://arxiv.org/abs/1401.0854">arXiv preprint</a>, arXiv:1401.0854 [math.NT], 2014.

%F Expansion of (K(k)/(Pi/2))^2 in powers of (kk'/4)^2, where K(k) is the complete elliptic integral of the first kind evaluated at modulus k. - _Michael Somos_, Jan 31 2007

%F G.f.: F(1/2, 1/2, 1/2; 1, 1; 64x) where F() is a hypergeometric function. - _Michael Somos_, Jan 31 2007

%F G.f.: hypergeom([1/4,1/4],[1],64*x)^2. - _Mark van Hoeij_, Nov 17 2011

%F D-finite with recurrence n^3*a(n) - 8*(2*n - 1)^3*a(n-1) = 0. - _R. J. Mathar_, Mar 08 2013

%F From _Peter Bala_, Jul 12 2016: (Start)

%F a(n) = binomial(2*n,n)^3 = ( [x^n](1 + x)^(2*n) )^3 = [x^n](F(x)^(8*n)), where F(x) = 1 + x + 6*x^2 + 111*x^3 + 2806*x^4 + 84456*x^5 + 2832589*x^6 + 102290342*x^7 + ... appears to have integer coefficients. For similar results see A000897, A002894, A006480, A008977, A186420 and A188662. (End)

%F a(n) ~ 64^n/(Pi*n)^(3/2). - _Ilya Gutkovskiy_, Jul 13 2016

%F 0 = (-x^2 + 64*x^3)*y''' + (-3*x + 288*x^2)*y'' + (-1 + 208*x)*y' + 8*y, where y is g.f. - _Gheorghe Coserea_, Jul 14 2016

%F a(n) = Sum_{k = 0..n} (2*n + k)!/(k!^3*(n - k)!^2). Cf. A001850(n) = Sum_{k = 0..n} (n + k)!/(k!^2*(n - k)!). - _Peter Bala_, Jul 27 2016

%F It appears that a(n) is the coefficient of (x*y*z)^(2*n) in the expansion of (1 + x*y + x*z - y*z)^(2*n) * (1 + x*y - x*z + y*z)^(2*n) * (1 - x*y + x*z + y*z)^(2*n). Cf. A000172. - _Peter Bala_, Sep 21 2021

%F From _Peter Bala_, Sep 24 2022: (Start)

%F a(n) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k,n).

%F a(n) = the coefficient of (x*y*z*t^2)^n in the expansion of 1/(1 - x - y)*(1 - z - t) - x*y*z*t) (a(n) = A(n,n,n,2*n) in the notation of Straub, Theorem 1.2). (End)

%F a(n) = (8/5) * Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k-1,n) for n >= 1. - _Peter Bala_, Jul 09 2024

%F a(n) = Sum_{k = 0..n} binomial(n, k)^2 * A108625(2*n, k). Cf. A183204. - _Peter Bala_, Oct 12 2024

%F From _Peter Bala_, Oct 16 2024: (Start)

%F a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k, k)*A108625(n, k) = 8 * Sum_{k = 0..n} (-1)^(n+k+1) * binomial(n-1, k)*binomial(2*n+k-1, k)*A108625(n, k) = (8/5) * Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k-1, k)*A108625(n, k) for n >= 1. Cf. A176285. (End)

%t a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64x], {x, 0, n}];

%t Table[Binomial[2n,n]^3,{n,0,20}] (* _Harvey P. Dale_, Dec 06 2017 *)

%o (PARI) {a(n) = binomial(2*n, n)^3}; /* _Michael Somos_, Jan 31 2007 */

%o (Sage) [binomial(2*n, n)**3 for n in range(21)] # _Zerinvary Lajos_, Apr 21 2009

%o (Magma) [Binomial(2*n, n)^3: n in [0..20]]; // _Vincenzo Librandi_, Nov 18 2011

%Y Cf. A000897, A002894, A006480, A008977, A108625, A176285, A183204, A186420, A188662.

%Y Related to diagonal of rational functions: A268545-A268555.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, _Simon Plouffe_