|
|
A134366
|
|
a(n) = (n!)^(n-1).
|
|
10
|
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..9.
|
|
FORMULA
|
a(n) ~ exp(1/12 + n - n^2) * n^((n-1)*(2*n+1)/2) * (2*Pi)^((n-1)/2). - Vaclav Kotesovec, Oct 26 2017
|
|
MAPLE
|
a:=n->mul(n!/k, k=1..n): seq(a(n), n=0..9); # Zerinvary Lajos, Jan 22 2008
restart:with (combinat):a:=n->mul(stirling1(n, 1), j=3..n): seq(a(n), n=1..10); # Zerinvary Lajos, Jan 01 2009
|
|
MATHEMATICA
|
Table[(n!)^(n - 1), {n, 0, 10}]
|
|
PROG
|
(PARI) a(n) = (n!)^(n-1); \\ Michel Marcus, Dec 23 2015
|
|
CROSSREFS
|
Cf. A000142, A001044, A000442, A134366. A134367, A134368, A134369, A134370, A134371, A134374, A134375.
Sequence in context: A224733 A264953 A308942 * A265944 A127234 A326961
Adjacent sequences: A134363 A134364 A134365 * A134367 A134368 A134369
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Artur Jasinski, Oct 22 2007
|
|
EXTENSIONS
|
Offset corrected to 0 by Michel Marcus, Dec 23 2015
|
|
STATUS
|
approved
|
|
|
|