login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n!)^(n-1).
10

%I #10 Oct 26 2017 16:00:41

%S 1,1,2,36,13824,207360000,193491763200000,16390160963076096000000,

%T 173238200573946282828103680000000,

%U 300679807141675805997423113304381849600000000

%N a(n) = (n!)^(n-1).

%F a(n) ~ exp(1/12 + n - n^2) * n^((n-1)*(2*n+1)/2) * (2*Pi)^((n-1)/2). - _Vaclav Kotesovec_, Oct 26 2017

%p a:=n->mul(n!/k, k=1..n): seq(a(n), n=0..9); # _Zerinvary Lajos_, Jan 22 2008

%p restart:with (combinat):a:=n->mul(stirling1(n,1), j=3..n): seq(a(n), n=1..10); # _Zerinvary Lajos_, Jan 01 2009

%t Table[(n!)^(n - 1), {n, 0, 10}]

%o (PARI) a(n) = (n!)^(n-1); \\ _Michel Marcus_, Dec 23 2015

%Y Cf. A000142, A001044, A000442, A134366. A134367, A134368, A134369, A134370, A134371, A134374, A134375.

%K nonn

%O 0,3

%A _Artur Jasinski_, Oct 22 2007

%E Offset corrected to 0 by _Michel Marcus_, Dec 23 2015