login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n!)^4.
13

%I #20 Oct 04 2018 18:26:07

%S 1,1,16,1296,331776,207360000,268738560000,645241282560000,

%T 2642908293365760000,17340121312772751360000,

%U 173401213127727513600000000,2538767161403058526617600000000,52643875858853821607942553600000000,1503561738404723998944447273369600000000

%N a(n) = (n!)^4.

%C a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_4(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_4 is A001159. - _Enrique Pérez Herrero_, Aug 13 2011

%H Alois P. Heinz, <a href="/A134375/b134375.txt">Table of n, a(n) for n = 0..100</a>

%F a(n) = det(S(i+4,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - _Mircea Merca_, Apr 04 2013

%p a:= n-> (n!)^4:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 15 2013

%t Table[((n)!)^(4), {n, 0, 10}]

%Y Cf. A000142, A001044, A000442, A036740, A010050, A009445, A134366, A134367, A134368, A134369, A134371, A134372, A134373, A134374.

%Y Row n=4 of A225816.

%K nonn

%O 0,3

%A _Artur Jasinski_, Oct 22 2007