login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186421
Even numbers interleaved with repeated odd numbers.
8
0, 1, 2, 1, 4, 3, 6, 3, 8, 5, 10, 5, 12, 7, 14, 7, 16, 9, 18, 9, 20, 11, 22, 11, 24, 13, 26, 13, 28, 15, 30, 15, 32, 17, 34, 17, 36, 19, 38, 19, 40, 21, 42, 21, 44, 23, 46, 23, 48, 25, 50, 25, 52, 27, 54, 27, 56, 29, 58, 29, 60, 31, 62, 31, 64, 33, 66, 33, 68, 35, 70, 35, 72, 37, 74, 37, 76, 39, 78, 39, 80, 41, 82, 41, 84, 43, 86, 43
OFFSET
0,3
COMMENTS
A005843 interleaved with A109613.
Row sum of superimposed binary filled triangle. - Craig Knecht, Aug 07 2015
FORMULA
a(2*k) = 2*k, a(4*k+1) = a(4*k+3) = 2*k+1.
a(n) = n if n is even, else 2*floor(n/4)+1.
a(2*n-(2*k+1)) + a(2*n+2*k+1) = 2*n, 0 <= k < n.
a(n+2) = A109043(n) - a(n).
G.f.: x*(1+2*x+2*x^3+x^4) / ( (1+x^2)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, Feb 23 2011
a(n) = n-(1-(-1)^n)*(n+i^(n(n+1)))/4, where i=sqrt(-1). - Bruno Berselli, Feb 23 2011
a(n) = a(n-2)+a(n-4)-a(n-6) for n>5. - Wesley Ivan Hurt, Aug 07 2015
E.g.f.: (x*cosh(x) + sin(x) + 2*x*sinh(x))/2. - Stefano Spezia, May 09 2021
EXAMPLE
A005843: 0 2 4 6 8 10 12 14 16 18 20 22
A109613: 1 1 3 3 5 5 7 7 9 9 11 11
this : 0 1 2 1 4 3 6 3 8 5 10 5 12 7 14 7 16 9 18 9 20 11 22 ... .
MAPLE
A186421:=n->n-(1-(-1)^n)*(n+(-1)^(n*(n+1)/2))/4: seq(A186421(n), n=0..100); # Wesley Ivan Hurt, Aug 07 2015
MATHEMATICA
Table[n - (1 - (-1)^n)*(n + I^(n (n + 1)))/4, {n, 0, 87}] (* or *)
CoefficientList[Series[x (1 + 2 x + 2 x^3 + x^4)/((1 + x^2) (x - 1)^2 (1 + x)^2), {x, 0, 87}], x] (* or *)
n = 88; Riffle[Range[0, n, 2], Flatten@ Transpose[{Range[1, n, 2], Range[1, n, 2]}]] (* Michael De Vlieger, Jul 14 2015 *)
PROG
(Haskell)
a186421 n = a186421_list !! n
a186421_list = interleave [0, 2..] $ rep [1, 3..] where
interleave (x:xs) ys = x : interleave ys xs
rep (x:xs) = x : x : rep xs
(Maxima) makelist(n-(1-(-1)^n)*(n+%i^(n*(n+1)))/4, n, 0, 90); /* Bruno Berselli, Mar 04 2013 */
(Magma) [IsEven(n) select n else 2*Floor(n/4)+1: n in [0..100]]; // Vincenzo Librandi, Jul 13 2015
(Python)
def A186421(n): return (n>>1)|1 if n&1 else n # Chai Wah Wu, Jan 31 2023
CROSSREFS
Cf. A186422 (first differences), A186423 (partial sums), A240828 (row sum of superimposed binary triangle).
Sequence in context: A234586 A338657 A347082 * A351752 A361189 A004560
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 21 2011
EXTENSIONS
Edited by Bruno Berselli, Mar 04 2013
STATUS
approved