login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Even numbers interleaved with repeated odd numbers.
8

%I #48 Jan 31 2023 15:11:23

%S 0,1,2,1,4,3,6,3,8,5,10,5,12,7,14,7,16,9,18,9,20,11,22,11,24,13,26,13,

%T 28,15,30,15,32,17,34,17,36,19,38,19,40,21,42,21,44,23,46,23,48,25,50,

%U 25,52,27,54,27,56,29,58,29,60,31,62,31,64,33,66,33,68,35,70,35,72,37,74,37,76,39,78,39,80,41,82,41,84,43,86,43

%N Even numbers interleaved with repeated odd numbers.

%C A005843 interleaved with A109613.

%C Row sum of superimposed binary filled triangle. - _Craig Knecht_, Aug 07 2015

%H Michael De Vlieger, <a href="/A186421/b186421.txt">Table of n, a(n) for n = 0..10000</a>

%H Craig Knecht, <a href="/A186421/a186421.jpg">Row sums of superimposed binary triangles</a>.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,0,-1).

%F a(2*k) = 2*k, a(4*k+1) = a(4*k+3) = 2*k+1.

%F a(n) = n if n is even, else 2*floor(n/4)+1.

%F a(2*n-(2*k+1)) + a(2*n+2*k+1) = 2*n, 0 <= k < n.

%F a(n+2) = A109043(n) - a(n).

%F G.f.: x*(1+2*x+2*x^3+x^4) / ( (1+x^2)*(x-1)^2*(1+x)^2 ). - _R. J. Mathar_, Feb 23 2011

%F a(n) = n-(1-(-1)^n)*(n+i^(n(n+1)))/4, where i=sqrt(-1). - _Bruno Berselli_, Feb 23 2011

%F a(n) = a(n-2)+a(n-4)-a(n-6) for n>5. - _Wesley Ivan Hurt_, Aug 07 2015

%F E.g.f.: (x*cosh(x) + sin(x) + 2*x*sinh(x))/2. - _Stefano Spezia_, May 09 2021

%e A005843: 0 2 4 6 8 10 12 14 16 18 20 22

%e A109613: 1 1 3 3 5 5 7 7 9 9 11 11

%e this : 0 1 2 1 4 3 6 3 8 5 10 5 12 7 14 7 16 9 18 9 20 11 22 ... .

%p A186421:=n->n-(1-(-1)^n)*(n+(-1)^(n*(n+1)/2))/4: seq(A186421(n), n=0..100); # _Wesley Ivan Hurt_, Aug 07 2015

%t Table[n - (1 - (-1)^n)*(n + I^(n (n + 1)))/4, {n, 0, 87}] (* or *)

%t CoefficientList[Series[x (1 + 2 x + 2 x^3 + x^4)/((1 + x^2) (x - 1)^2 (1 + x)^2), {x, 0, 87}], x] (* or *)

%t n = 88; Riffle[Range[0, n, 2], Flatten@ Transpose[{Range[1, n, 2], Range[1, n, 2]}]] (* _Michael De Vlieger_, Jul 14 2015 *)

%o (Haskell)

%o a186421 n = a186421_list !! n

%o a186421_list = interleave [0,2..] $ rep [1,3..] where

%o interleave (x:xs) ys = x : interleave ys xs

%o rep (x:xs) = x : x : rep xs

%o (Maxima) makelist(n-(1-(-1)^n)*(n+%i^(n*(n+1)))/4, n, 0, 90); /* _Bruno Berselli_, Mar 04 2013 */

%o (Magma) [IsEven(n) select n else 2*Floor(n/4)+1: n in [0..100]]; // _Vincenzo Librandi_, Jul 13 2015

%o (Python)

%o def A186421(n): return (n>>1)|1 if n&1 else n # _Chai Wah Wu_, Jan 31 2023

%Y Cf. A005843, A109043, A109613.

%Y Cf. A186422 (first differences), A186423 (partial sums), A240828 (row sum of superimposed binary triangle).

%K nonn,easy

%O 0,3

%A _Reinhard Zumkeller_, Feb 21 2011

%E Edited by _Bruno Berselli_, Mar 04 2013