login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001701 Generalized Stirling numbers.
(Formerly M4169 N1735)
19
1, 6, 26, 71, 155, 295, 511, 826, 1266, 1860, 2640, 3641, 4901, 6461, 8365, 10660, 13396, 16626, 20406, 24795, 29855, 35651, 42251, 49726, 58150, 67600, 78156, 89901, 102921, 117305, 133145, 150536, 169576, 190366, 213010, 237615, 264291, 293151, 324311 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For n>3, a(n-2) gives the number of bounded regions created when the pairwise perpendicular bisectors of n points divide the Euclidean plane into a maximum of A308305(n) regions. This is also equivalent to the number of regions lost from A308305(n) when n>3 points move from maximal position to a circle. - Alvaro Carbonero, Elizabeth Castellano, Charles Kulick, Karie Schmitz, Jul 26 2019

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

D. S. Mitrinovic, M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).

Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = n*(n-1)*(3n^2 + 17n + 26)/24, n > 1.

G.f.: z*(-1-z-6*z^2+9*z^3-5*z^4+z^5)/(z-1)^5. - Simon Plouffe in his 1992 dissertation

If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i) * Product_{j=0..k-1} (-a - j), then a(n) = f(n,n-2,2), for n >= 2. - Milan Janjic, Dec 20 2008

For n>1, a(n) = A308305(n+2) - (n^2 + 3n + 2). - Alvaro Carbonero, Elizabeth Castellano, Charles Kulick, Karie Schmitz, Jul 20 2019

E.g.f.: x + (1/24)*exp(x)*x^2*(72 + 32*x + 3*x^2). - Stefano Spezia, Sep 07 2019

MAPLE

A001701 := proc(n)

    if n = 1 then

        1;

    else

        n*(n-1)*(3*n^2+17*n+26)/24 ;

    end if;

end proc: # R. J. Mathar, Sep 23 2016

MATHEMATICA

f[k_] := k + 1; t[n_] := Table[f[k], {k, 1, n}]; a[n_] := SymmetricPolynomial[2, t[n]]; Join[{1}, Table[a[n], {n, 2, 30}]] (* Clark Kimberling, Dec 31 2011 *)

Join[{1}, Table[n (n - 1) (3 n^2 + 17 n + 26) / 24, {n, 2, 40}]] (* Vincenzo Librandi, Sep 30 2018 *)

CoefficientList[Series[(-1 - x - 6 x^2 + 9 x^3 - 5 x^4 + x^5)/(-1 + x)^5, {x, 0, 30}], x] (* Stefano Spezia, Sep 30 2018 *)

From Robert A. Russell, Oct 04 2018: (Start)

Prepend[Table[Coefficient[Product[x+j, {j, 2, k}], x, k-3], {k, 3, 40}], 1]

Prepend[LinearRecurrence[{5, -10, 10, -5, 1}, {6, 26, 71, 155, 295}, 40], 1] (End)

PROG

(GAP) Concatenation([1], List([2..40], n->n*(n-1)*(3*n^2+17*n+26)/24)); # Muniru A Asiru, Sep 29 2018

(MAGMA) [1] cat [n*(n-1)*(3*n^2 + 17*n + 26)/24: n in [2..40]]; // Vincenzo Librandi, Sep 30 2018

(PARI) Vec(x*(-1-x-6*x^2+9*x^3-5*x^4+x^5)/(-1+x)^5+O(x^30)) \\ Stefano Spezia, Sep 30 2018

CROSSREFS

Equals A059302(n+2) + 1, n>1. Partial sums of A005564.

For n>1, a(n) = A145324(n+1,3).

Sequence in context: A190095 A135036 A166796 * A241452 A175898 A255870

Adjacent sequences:  A001698 A001699 A001700 * A001702 A001703 A001704

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 17:04 EST 2019. Contains 329201 sequences. (Running on oeis4.)